コンピュータビジョンを学ぶための81ページのガイド

コンピュータビジョンを学ぶための81ページのガイド

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

クラスメイト、君はコンピュータービジョンの落とし穴に落ちてしまったと聞いたよ。

おめでとうございます。今では、細心の注意を払ってケアできる 81 ページの CV 成長ガイドがあります。

Pythonのインストール、OpenCVのインストール、ディープラーニングの入門から、顔認識、物体検出、セマンティックセグメンテーションなどのさまざまな応用まで、チュートリアル、事例、注意事項を盛り込んだ上級ルートがあります。 Raspberry Pi などのハードウェアにアルゴリズムを展開する方法に関する経験も見つかります。

ツイートが送信されてから12時間以内に、1,200人が「いいね!」しました。著者は、チュートリアルを頻繁に作成している宝物男、Adrian Rosebrock 氏です。

あなたが初心者であり、有能なベテランドライバーに成長したい場合は、このガイドに印を付けてください。

それでは、コンテンツがどれだけ充実しているか見てみましょう。

どんなに小さくても

「始めてから諦めるまで」という悲劇を避けるために、このガイドではベテランドライバーになるまでのあらゆるステップを整理します。

カタログから見ると、大きく分けて 2 つの部分に分かれており、左の列が基礎、右の列がアプリケーションです。

まず左側の基本的な装備を見てみましょう。

どこから始めればいいでしょうか?
ディープラーニング
フェイスアプリケーション
画像テキスト認識(OCR)
物体検出
ターゲット追跡
インスタンスセグメンテーションとセマンティックセグメンテーション

第 1 章「どこから始めればよいですか?」は、OpenCV の高度なガイドです。

1 つ目は Python と OpenCV をインストールすること (初心者)、2 つ目はコマンドライン引数を理解すること (初心者)、3 つ目は例を使って OpenCV を学ぶこと (初心者)、4 つ目は自分で小さな OpenCV プロジェクトを構築すること (初心者)、5 つ目はより高度な OpenCV プロジェクトを実行すること (中級)、6 つ目は CV の大きな世界で自分の小さな方向性を選択すること (中級) です。

各ステップで注意すべき点や、必要なチュートリアル リソースがあります。

たとえば、OpenCV をインストールする最も簡単な方法は何か、Windows を使用しないのはなぜか、プロジェクトを実行するときに避けるべき一般的なエラーの種類は何かなどです。

いくつかのステップは複数の小さなステップに分かれており、それぞれの小さなステップには著者の温かい提案があります。たとえば、これはステップ 5 です。

この章の 6 つの手順を完了すると、「次のステップ」という別の手順が表示されます。この手順では、次に何をすべきかが示されるだけでなく、追加のチュートリアル リソースも提供されます。

第 2 章「ディープラーニング」は、第 1 章よりも内容が充実した高度なアルゴリズム コースです。12 のステップがあります。

1 つ目はディープラーニング環境の構築 (初級)、2 つ目は最初のネットワークのトレーニング (初級)、3 つ目は CNN の理解 (初級)、4 つ目は独自の画像データセットの構築 (中級)、5 つ目は独自のデータセットで CNN をトレーニング (中級)、6 つ目は学習率の調整 (中級)、7 つ目はデータ拡張 (中級)、8 つ目は特徴抽出と事前トレーニング済みネットワークの微調整 (中級)、9 つ目はビデオ分類 (上級)、10 つ目は多入力多出力ネットワーク (上級)、11 つ目は独自のネットワークの改善 (上級)、12 つ目は AutoML と AutoKeras です。

それでも、各ステップには詳細なガイダンスが提供されており、過去の成功事例があなたを保護します。たとえば、これはステップ 12 です。

第 3 章「顔アプリケーション」からは、さまざまな特定のタスクで使用されるアルゴリズムが紹介されています。

顔を検出し、キーポイントを検出し、顔を認識し、アルゴリズムの精度を向上させます...また、最初の 2 つの章の高度なルートをタスクに実装します。

この章では、著者のエイドリアン・ローズブロックが頻繁に登場します。

第 4 章から第 7 章のテキスト認識、ターゲット検出、ターゲット追跡、インスタンスセグメンテーション、セマンティックセグメンテーションは第 3 章と同じなので、ここでは詳しく説明しません。

著者は高密度のシーンに引き続き登場します。

次に、現実を理解するのに役立つ右側の列を見てください。

組み込みおよびIoT向けCV
Raspberry Pi 上の CV
医療分野の履歴書
・ ビデオ
画像検索エンジン
· 専門家へのインタビュー、ケーススタディ(およびチュートリアル)、成功事例

たとえば、独自のアルゴリズムを Raspberry Pi、冷蔵庫、または脳に組み込む方法についての詳細な手順が記載されています。

著者はまだ登場しています:

さらに、さまざまな成功した先人たちへのインタビューがあり、初心者が学べる成功事例(または付随するチュートリアル)がいくつか含まれています。

この情報は、技術的なアドバイスに加えて、高麗人参のピークに向かう途中であなたを刺激するおいしいチキンスープとしても役立ちます。

<<:  90年代以降の世代は、分野を超えてNLPを独学で学び、オープンソースライブラリHanLPを作成しました。このライブラリはGitHubで15,000個のスターを獲得しています。

>>:  2019年北京知源会議が北京で開幕、中国と海外の学術リーダーが人工知能研究の最前線について議論

ブログ    
ブログ    
ブログ    

推薦する

OpenAIの競合InflectAIがマイクロソフトとビル・ゲイツの支援を受けて13億ドルを調達

OpenAIの競合企業Inflection AIは最近、Microsoft、リード・ホフマン、ビル・...

...

職場は「理想の街」になり得るか?企業と従業員の両方にAIを活用した自動化が必要

従業員が複雑なタスクに圧倒され、毎日同じ作業を繰り返すうちに徐々に疲れ果てていく一方で、企業も業務プ...

TuSimpleはAIと自動運転に注力し、時価総額84億ドル超でナスダックに正式に上場した。

海外メディアの報道によると、人工知能(AI)と自動運転の企業TuSimpleが株式コード「TSP」で...

...

医学物理学におけるAIの応用に関する簡単な分析

近年、バイオメディカルにおける人工知能 (AI) と機械学習 (ML) アルゴリズムの応用は拡大し続...

ビッグデータ時代に機械学習 (ML) がビジネスを推進する 5 つの方法

世界がますますデジタル化されるにつれて、かつてない量のデータが毎日生成され、組織にはこの膨大な量のデ...

TiDB v5.1 体験: TiDB で機械学習モデルをトレーニングしました

序文ご存知のとおり、TiDB バージョン 5.1 では多くの新機能が追加されましたが、その 1 つが...

Facebookは再生可能エネルギー貯蔵を改善するために人工知能を活用する

Facebookとカーネギーメロン大学は、AIを使って新たな「電気触媒」を見つけようとしていると発表...

情報漏洩を防ぐためにローカルで構築できるオープンソースモデルPrivateGPTが利用可能になりました

6月25日、サムスン、JPモルガン・チェース、アップル、アマゾンなどの企業は、会社の機密情報の漏洩を...

Volcano Engineがビヨンドのクラシックコンサートを超高解像度で復元、その技術的能力が一般公開される

7月3日夜、TikTokはユニバーサルミュージック傘下のレーベル、ポリグラムと提携し、ボルケーノエン...

...

...

...