人工知能システム用の新しいコンピュータチップが利用可能になりました。 プリンストン大学の研究者たちは、コンピューティングの基本的な特性を変えることで、エネルギー要件を削減しながらパフォーマンスを大幅に向上させる人工知能システムに重点を置いた新しいコンピュータチップを開発しました。 このチップは、プロセッサがメモリからデータを取得するために多くの時間とエネルギーを費やす必要があるという主なボトルネックを克服し、メモリ内で直接計算を実行することで速度と効率を向上させることを目的とした、インメモリ コンピューティング テクノロジに基づいています。このチップは標準的なプログラミング言語を使用しており、高性能コンピューティングに依存し、バッテリー寿命が限られている携帯電話、時計、その他のデバイスで特に役立ちます。 多くのアプリケーションでは、チップのエネルギー節約はパフォーマンスの向上と同じくらい重要であると研究者らは述べた。これは、多くの AI アプリケーションが携帯電話やウェアラブル医療センサーなどのバッテリー駆動のデバイスで実行されるためである。ここでもプログラミングの必要性が生まれます。 従来のコンピュータ アーキテクチャでは、データを処理する中央処理装置 (CPU) と、データを保存するメモリが分離されており、コンピュータのエネルギーの多くはデータのやり取りに使用されます。新しいチップは、トランジスタレベルではなくアーキテクチャレベルでムーアの法則の限界を打ち破ることを検討しています。しかし、このようなシステムを作成する際の課題は、大量のデータを詰め込むためにメモリ回路をできるだけ高密度に設計することです。 研究チームは上記の問題を解決するためにコンデンサを使用しました。コンデンサはトランジスタよりも高密度の空間で計算を実行でき、チップ上に非常に精密に作ることもできます。新しい設計では、チップ上の従来の静的ランダム アクセス メモリ (SRAM) セルとコンデンサを組み合わせています。コンデンサと SRAM の組み合わせは、アナログ (非デジタル) 領域のデータの計算を実行するために使用されます。このメモリ回路は、チップの中央処理装置の指示に従って計算を実行できます。 実験室でのテストでは、このチップは類似のチップに比べて数十倍から数百倍高速に動作することが示されています。研究者らは、メモリ回路をプログラム可能なプロセッサアーキテクチャに統合したと述べている。 「以前のチップが強力なエンジンだったとしたら、新しいチップは車両全体です。」 プリンストン大学が開発した新しいチップは、主に、コンピューターがデータセットから学習して意思決定を行い、複雑なタスクを実行できるようにするディープラーニング推論アルゴリズム用に設計されたシステムをサポートするように設計されています。ディープラーニング システムは、自動運転車、顔認識システム、医療診断ソフトウェアをガイドします。 |
<<: 人工知能プロジェクトからビジネス価値をうまく引き出すための 8 つの秘訣
Google、Facebook、Twitterなど、世界中の大手テクノロジー企業が人工知能ソリュー...
人工知能 (AI)、自動化、認知システムを取り巻く原則と実践は、ビジネス分野、専門知識、専門分野に関...
[[440100]]半導体チップの継続的な不足が世界の自動車生産の減少につながるとの予測が高まって...
AI がより高度化し、普及するにつれて、多くの企業が最高 AI 責任者 (CAIO) を任命するかど...
シュメール王国の時代から、この賢明な王国の人々はデータを記録し、国勢調査を実施し、食糧を配給し始めま...
過去1年ほど、COVID-19パンデミックの影響により、効率的なサプライチェーンの重要性が特に顕著に...
[51CTO.com からのオリジナル記事] 今日の情報化社会には、さまざまな情報リソースが溢れて...
2012 年にディープラーニングが再び注目されて以来、初期の学術フレームワークである Caffe ...
近年、人工知能の継続的な発展とインテリジェント時代の静かな到来に伴い、顔認識に代表される生体認証技術...
急速に発展するデジタル時代において、ビジネスの成功にとって高品質で効率的なテスト サービスが重要であ...
9月1日、成都地下鉄全線で「スマート旅客サービスプラットフォーム」がオンラインで開始されました。この...
[[375650]]生物学分野における人工知能の応用は飛躍的に進歩しています。創薬、診断開発からヘル...
ディープラーニングが進歩するにつれて、ニューラルネットワークはますます大きくなっています。たとえば、...