人工知能システム用の新しいコンピュータチップが利用可能になりました。 プリンストン大学の研究者たちは、コンピューティングの基本的な特性を変えることで、エネルギー要件を削減しながらパフォーマンスを大幅に向上させる人工知能システムに重点を置いた新しいコンピュータチップを開発しました。 このチップは、プロセッサがメモリからデータを取得するために多くの時間とエネルギーを費やす必要があるという主なボトルネックを克服し、メモリ内で直接計算を実行することで速度と効率を向上させることを目的とした、インメモリ コンピューティング テクノロジに基づいています。このチップは標準的なプログラミング言語を使用しており、高性能コンピューティングに依存し、バッテリー寿命が限られている携帯電話、時計、その他のデバイスで特に役立ちます。 多くのアプリケーションでは、チップのエネルギー節約はパフォーマンスの向上と同じくらい重要であると研究者らは述べた。これは、多くの AI アプリケーションが携帯電話やウェアラブル医療センサーなどのバッテリー駆動のデバイスで実行されるためである。ここでもプログラミングの必要性が生まれます。 従来のコンピュータ アーキテクチャでは、データを処理する中央処理装置 (CPU) と、データを保存するメモリが分離されており、コンピュータのエネルギーの多くはデータのやり取りに使用されます。新しいチップは、トランジスタレベルではなくアーキテクチャレベルでムーアの法則の限界を打ち破ることを検討しています。しかし、このようなシステムを作成する際の課題は、大量のデータを詰め込むためにメモリ回路をできるだけ高密度に設計することです。 研究チームは上記の問題を解決するためにコンデンサを使用しました。コンデンサはトランジスタよりも高密度の空間で計算を実行でき、チップ上に非常に精密に作ることもできます。新しい設計では、チップ上の従来の静的ランダム アクセス メモリ (SRAM) セルとコンデンサを組み合わせています。コンデンサと SRAM の組み合わせは、アナログ (非デジタル) 領域のデータの計算を実行するために使用されます。このメモリ回路は、チップの中央処理装置の指示に従って計算を実行できます。 実験室でのテストでは、このチップは類似のチップに比べて数十倍から数百倍高速に動作することが示されています。研究者らは、メモリ回路をプログラム可能なプロセッサアーキテクチャに統合したと述べている。 「以前のチップが強力なエンジンだったとしたら、新しいチップは車両全体です。」 プリンストン大学が開発した新しいチップは、主に、コンピューターがデータセットから学習して意思決定を行い、複雑なタスクを実行できるようにするディープラーニング推論アルゴリズム用に設計されたシステムをサポートするように設計されています。ディープラーニング システムは、自動運転車、顔認識システム、医療診断ソフトウェアをガイドします。 |
<<: 人工知能プロジェクトからビジネス価値をうまく引き出すための 8 つの秘訣
6月28日、OpenAIは今年5月にリリースしたChatGPTアプリのiOS版をリリースした。このア...
最初の大規模モデルアライメント技術レポート(大規模言語モデルにおけるRLHFの秘密パートI)がNeu...
多国籍データ インフラストラクチャ企業である Equinix は、機械学習の確率モデルを使用して潜在...
この魅力的な旅をさらに深く探究する中で、モノのインターネット (IoT)、スマート交通システム、エネ...
7月26日、マイクロソフト広告およびウェブサービスのCEOであるミハイル・パラキン氏は、ネットユーザ...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
世界的な市場調査およびコンサルティング会社である Nova One Advisor は、医療画像分野...
ディープラーニング モデルを本番環境に導入することは、優れたパフォーマンスのモデルをトレーニングする...
[51CTO.com からのオリジナル記事] インターネットの継続的な更新と反復により、ネットワーク...
データ分析は現代社会において常に重要なツールであり、本質を理解し、パターンを発見し、意思決定を導くの...
舒城県裁判所杭埠法廷は最近、建設工事契約紛争事件の審理に法廷音声認識システムを使用した。これは、杭埠...
人工知能は世界のほぼすべての分野に変革をもたらしたようです。ヘルスケア業界は長年にわたって大きく変化...
CRISPRは遺伝子編集技術の専門用語です。簡単に言えば、ウイルスは細菌に自身の遺伝子を組み込み、細...