素晴らしいディープラーニング コース 8 つ (評価付き)

素晴らしいディープラーニング コース 8 つ (評価付き)

エンジニアリング分野では、機械学習の応用は想像されているほど一般的ではありませんが、ディープラーニングは日々人々の生活を変えています。ディープラーニングに関する優れた入門コースを受講すれば、テクノロジー分野の最先端を理解できるだけでなく、仕事の競争力を高めることにも役立ちます。次の 8 つのコース (評価のほとんどは Class Central によるもの) があなたに推奨されます。

[[243636]]

1. TensorFlow によるディープラーニングのクリエイティブな応用

カデンゼ

★★★★☆ (43件のレビューに基づく)

このコースでは、ディープラーニングを紹介し、最先端の人工知能アルゴリズムを構築できるようになります。ディープラーニングとは何か、アルゴリズムはどのように機能するのか、畳み込みニューラル ネットワーク、変分オートエンコーダー、生成的敵対的ネットワーク、再帰ニューラル ネットワークを構築するためのプログラムの書き方など、最も基本的なディープラーニングの知識 (基礎コース) が含まれています。このコースでは、アルゴリズムの構築方法を学習するだけでなく、クリエイティブなアプリケーションについても詳しく説明します。

2. 機械学習のためのニューラルネットワーク

トロント大学

★★★☆ (25件のレビューに基づく)

音声や物体の認識、画像のセグメンテーション、言語や人間の動きのモデリングなどの分野では、機械学習とニューラル ネットワークが使用されています。このコースでは、これらのアプリケーションに必要な基本的なアルゴリズムと、それらを実装するための優れたテクニックについて説明します。このコースでは、微積分と Python プログラミングに関する知識が必要です。

3. MIT 6.S191: ディープラーニング入門

マサチューセッツ工科大学(MIT)

★★★★☆ (2件のレビューに基づく)

このコースでは、ディープラーニングの基本的な手法(入門コース)と、機械翻訳、画像認識、ゲーム、画像生成などの応用について紹介します。このコースには、TensorFlow と連携した実験も含まれます。

4. MIT 6.S094: 自動運転車のためのディープラーニング

マサチューセッツ工科大学(MIT)

★★★★☆ (1件のレビューに基づく)

これは機械学習の初心者向けに設計された初心者向けのコースであり、研究者向けの実用的な現場リファレンスも提供します。このコースでは、自動運転車を構築することでディープラーニングを紹介します。

5. CS224d: 自然言語処理のためのディープラーニング

オックスフォード大学

評価なし

これは自然言語処理に関する上級コースです。確率論、線形代数、連続数学に関する一定の基礎知識、基本的な機械学習モデルの理解、プログラミング能力は必要ですが、言語学の知識は必要ありません。さまざまなニューラル ネットワーク モデルを学習し、モデル アルゴリズムを最適化し、これらのアルゴリズムを使用して最先端の NLP システムを構築する方法を理解し、アプリケーション プロセス中に発生する可能性のあるハードウェアの問題を理解し、最後に NLP 用の一般的なニューラル ネットワーク モデルを実装して評価できるようになります。

6. CS224n: ディープラーニングによる自然言語処理

スタンフォード大学

評価なし

ディープラーニングは自然言語処理にうまく応用できます。このコースでは、学生は独自のニューラル ネットワーク モデルを実装、トレーニング、デバッグ、視覚化、さらには発明する方法を学びます。このコースでは、NLP に適用されるディープラーニングの最先端の研究を包括的に紹介します。モデルには、ウィンドウベースのニューラル ネットワーク、再帰ニューラル ネットワーク、長期短期記憶モデル、畳み込みニューラル ネットワークなどが含まれます。プログラミング課題は、必要な実践的なスキルを習得するのに役立ちます。

7. CS231n: 視覚認識のための畳み込みニューラルネットワーク

スタンフォード大学

評価なし

このコースは Fei-Fei Li が指導し、10 週間続きます。コースでは、画像分類に重点を置きながら、ディープラーニングの詳細を深く探究します。学生は、独自のニューラル ネットワーク モデルをトレーニングおよびデバッグする方法を学び、コンピューター ビジョンの最先端の分野に触れます。コースの資料は、ノートやビデオなども含めてスタンフォードのコースホームページに掲載されています。

8. Deep Learning AZ™: 実践的な人工ニューラルネットワーク

キリル・エレメンコとSuperDataScienceチーム

★★★★☆(13,832件のレビューに基づく)

Python を使用してディープラーニング アルゴリズムを構築する方法を学びます (実践に重点を置いて)。このコースは、教師あり学習と教師なし学習の 2 つの部分に分かれています。各セクションでは 3 つの異なるアルゴリズムを紹介します。単なる数学的な導出や手順ではなく、ディープラーニングの背後にある直感的な理解に焦点を当てます。このコースの実践的なプロジェクトは、現実世界のデータセットに基づいており、現実世界の問題を解決するように設計されています。

<<:  ディープラーニングとニューラルネットワーク: 注目すべき 6 つのトレンド

>>:  人工知能とブロックチェーンが連携すると、どのような技術的利益が生まれるのでしょうか?

ブログ    
ブログ    
ブログ    

推薦する

比較ベースのアルゴリズムでは、5 つの要素をソートするのに 7 回のパスが必要だと言われるのはなぜですか?

結果のソートアルゴリズムの唯一の要件は、オペランドが全順序関係を満たすことです。 a≤b かつ b≤...

コグニティブコンピューティングによる運用・保守は効果的でしょうか?

[51CTO.com からのオリジナル記事] 人工知能は最近とても人気があります。人々の焦点は、A...

アンドリュー・ン氏の新たな動き:「データ中心のAI」の拠点となる新たなMLリソースサイトを設立

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

階乗関連のアルゴリズムとその C++ 実装

階乗とは、必要な数値が得られるまで 1 × 2 × 3 × 4 を掛け合わせることを意味します。 C...

私の国の医薬品人工知能市場は急速な成長期に入っている

3月23日から26日まで、2021年重大健康産業(重慶)博覧会と第6回双品会が重慶で開催されました。...

Microsoft Azure AI テキスト読み上げサービスのアップグレード: 新しい男性の声とより多くの言語サポート

8月9日、Microsoft Azureは企業向けにクラウドベースのサービスと機能を多数提供開始しま...

慎重なソート - よく使われる 10 のディープラーニング アルゴリズム

過去 10 年間で、機械学習への関心は爆発的に高まりました。機械学習は、コンピューター プログラム、...

...

新しいマルチモーダル大型モデルがリストを独占!画像とテキストの混合入力をサポートしているので、知識がわからなくても学習できます

マルチモーダル大型モデルファミリーに新しいメンバーが加わりました!複数の画像とテキストを組み合わせて...

マイクロソフトのオープンソースAIツールが古い写真に新たな命を吹き込む

序文GitHub Hot Trends Vol.046では、HGがMicrosoftのオープンソース...

AIはデザインにおいて具体的にどのように使用されるのでしょうか?

人工知能は、過去数十年で最も大きな技術進歩の一つになりました。可能性は刺激的で無限であり、さまざまな...

...

神経スタイル転送研究の概要: 現在の研究から将来の方向性まで

スタイル転送は最近人工知能の分野で注目されている研究テーマであり、Synced でも多くの関連研究が...

IBMはGPUを使用して機械学習の効率を10倍向上させる

[[212269]] IBM は、EPFL の研究者と共同で、機械学習アルゴリズムをトレーニングする...