ビッグデータと人工知能のために生まれた新しい職業:アルゴリズム専門家

ビッグデータと人工知能のために生まれた新しい職業:アルゴリズム専門家

ビッグデータとは、さまざまな種類のデータから貴重な情報を迅速に取得する能力を指します。これを理解することは非常に重要であり、それがこのテクノロジーが多くの企業にとって非常に魅力的な理由です。

アマゾンの価格比較推奨、Netflix の「ハウス・オブ・カード」人気に対する計画の成功、マイクロソフト リサーチ ニューヨークの経済学者デビッド・ロスチャイルドによるオバマ大統領からアカデミー賞、NBA に至るまでのデータを正確に予測したことなどから、これが単なる見せかけの技術ではないことが十分に証明されている。

ビッグデータには 4 つの明らかな利点があります。まず、データ量が膨大であることです。 TB レベルから PB レベルに飛躍しました。第二に、データの種類が多くなりました。上記のウェブログ、ビデオ、写真、地理的位置情報など。 3つ目は、価値密度が低いことです。ビデオを例にとると、継続的な監視中に有用なデータが 1 秒か 2 秒しかない場合があります。 4つ目は、処理速度が速いことです。

人工知能は非常に複雑な分野であり、他の知識の側面も含む学際的なコンピュータ分野です。その主な内容は、コンピュータが人間の自然言語処理を学習することです。私たちはターミネーターのようなSFシーンを想像する必要はありません。それは科学者が研究すべきものです。現実の世界では、音声認識機能を備え、自然言語処理の一部である Apple の Siri など、ビッグデータと人工知能を組み合わせた製品がますます増えています。実際の応用においては、スマートフォン上でのサービス展開など、ユーザーの日常的なニーズを解決できる多くの役割を果たします。

では、ここはビッグデータと人工知能が出会うのにふさわしい場所なのでしょうか? 簡単な原則を見てみましょう。

『ビッグデータ:私たちの生活、仕事、思考を変える革命』という本の中で、著者のビクター・メイヤーは、今日のコンピュータシステムは、プログラムの作成時に明示的に従う必要があるルールに基づいて計算を実行すると述べています。したがって、結果が時々、そして必然的に間違っている場合は、戻って再コーディングすることができます。コンピュータ コードがどんなに複雑であっても、あらゆる操作の基礎を理解して実行することは可能です。

しかし、ビッグデータを追跡することは非常に困難になっています。まず、アルゴリズムによる予測の基礎は、一般の人には理解できないほど複雑すぎる可能性があります。 Google 翻訳は、数十億ページ分の翻訳データを使用して単語の翻訳方法を決定します。 膨大な量のデータに基づくこの大規模な統計計算により、アルゴリズムの特定の要素を追跡することはほぼ不可能になります。同時に、ビッグデータの規模により、その運用規模は私たちの想像を超えています。 Google は 4 億 5000 万の数学的モデルをテストした結果、いくつかの検索キーワードとインフルエンザとの関連性を特定しました。

顧客にこの技術を使うよう説得したい場合、調整を手伝ってくれるアルゴリズム専門家が必要です。この職業に就く人にはどのような要件がありますか?

まず、これらの専門家はコンピューターサイエンス、数学、統計学の専門家です。彼らは日々の仕事の中で、ビッグデータの分析と予測を検討しています。データ ソースを評価し、予測を分析し、基礎となるアルゴリズム モデルを作成します。アルゴリズムの原理をテストする必要がある場合は、アルゴリズムの結果、統計的手法、データベースを呼び出します。簡単に言えば、アルゴリズム担当者はデータの選別を担当します。

コンピュータの発達により、蓄積された膨大なデータベースを、目的に応じて利用できるように整理・編集する人が必要になりました。ここで、アルゴリズム専門家は外部アルゴリズム専門家と内部アルゴリズム専門家に分けられます。外部のアルゴリズム専門家は、裁判所命令や規制が発令されたときなど、政府が必要とするときに、ビッグデータ予測の正確性や合理性をチェックする中立的な監査人として行動することができます。アルゴリズム専門家は、ビッグデータ企業にサービスを提供したり、専門的な監査サービスを提供したりすることができます。

社内のアルゴリズム専門家が組織内のビッグデータ活動を監視します。彼らは、企業の利益だけでなく、企業のビッグデータ分析の影響を受ける人々の利益にも焦点を当てています。彼らはビッグデータ運用を監督しており、社内のアルゴリズム専門家は、政府機関のビッグデータ予測によって損害を受けたと感じた人が最初に連絡を取る相手である。データが公開される前に、分析の完全性と正確性を確認します。最初の 2 つのタスクを達成するには、アルゴリズム担当者は勤務先の企業内である程度の自由と中立性を享受する必要があります。つまり、社内アルゴリズム専門家は、企業が社会の信頼を維持するために必要な職業なのです。

アルゴリズム専門家の需要の最も直接的な理由は、ビッグデータの分野では企業を制約する新しい規範や標準がまだ確立されていないことです。アルゴリズムエンジニアは、個人情報のセキュリティに関する社会の懸念を解決するためのシステムを設計します。ブラックボックスを開くこの職業に興味がある人はいますか?

オリジナルリンク: http://www.199it.com/archives/103944.html

【編集者のおすすめ】

  1. 分散ファイルシステム HDFS 設計
  2. ビッグデータマイニングによりPE/VCの効率が上がり、LinkedInが最高のツールに
  3. Foursquare の野望: ビッグデータ時代の「ライブマップ」
  4. データベースに絶対に入れてはいけない3つのこと
  5. データ駆動型のプロセスと製品がなければビッグデータは無価値である

<<:  SQL Serverは最短経路検索アルゴリズムを実装しています

>>:  ビッグデータと人工知能のために生まれた新しい職業:アルゴリズム専門家

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

AIを正しい方向に導く

過去 1 年間、私は何百人ものクライアントにインタビューし、AI によって可能性に対する認識がどのよ...

MITの新しいAI研究:セーターが編めなくても問題ない、AIにやらせればいい

人工知能といえば、最先端のクールなアプリケーションのほかに、この話題になると「偽物」という言葉が思い...

推奨システムの結果の品質を評価する方法

推奨システムは、インターネットの発展において最も一般的かつ重要な技術の 1 つです。今日では、あらゆ...

...

...

Meta AIは、ImageNetの事前トレーニングを超えて、小規模データセット向けの自己教師付き事前トレーニングであるSplitMaskを提案しています。

現在、コンピューター ビジョン ニューラル ネットワークは高度にパラメータ化されています。通常、数千...

ヒープソートアルゴリズムの普及チュートリアル

[[121962]]この記事の参考文献: アルゴリズム入門、第 2 版。この記事では、ヒープソートア...

インテリジェント時代の到来により、インテリジェントロボットが私たちの仕事と収入を奪ってしまうのでしょうか?

インテリジェント社会の到来とともに、インテリジェントロボットは私たちの生活や仕事にますます多く登場す...

...

「機械学習アーキテクチャ」 現実世界の機械学習システムのアーキテクチャ

機械学習では、ML モデルの作成とパッケージ化を支援する ML 開発プラットフォームの概要を説明しま...

国産アルゴリズムの普及はネットワークセキュリティ構築の最優先事項

情報化建設の加速に伴い、ネットワークセキュリティは情報化時代のホットな話題となり、国民の関心と注目を...

AMiner が発表: 2022 年に世界で最も影響力のある人工知能学者「AI 2000」

2022年1月25日、人工知能分野で世界で最も影響力のある学者の2022年リスト「AI 2000」...

機械読解:人工知能技術の重要な分野の一つ

機械読解(MRC)は、自然言語処理の分野における最近の研究のホットスポットの 1 つであり、人間の言...

人工知能をうまく実装するにはどうすればよいでしょうか?

人工知能 (AI) と機械学習 (ML) は、ビジネスの流行語から、より広範な企業での導入へと移行し...

...