ロボットが家事の仕事を代行:人間のデモンストレーション動画を見るだけで、10時間でコーヒーの淹れ方を学ぶ

ロボットが家事の仕事を代行:人間のデモンストレーション動画を見るだけで、10時間でコーヒーの淹れ方を学ぶ

先週、スタンフォード大学のエビ揚げロボットが爆発事故を起こした後、コーヒーを作るロボットが再び人気を集めている。

非常に強力なのは、人間のデモンストレーションビデオを視聴するだけで、わずか 10 時間のエンドツーエンドのトレーニングで、このタスクを完全に自立して学習し、完了できることです。

もちろん、より正確に言うと、コーヒーマシンを操作することです。

蓋を開けてコーヒーバッグを入れ、スタートボタンを押すだけです。リモコンを使わずに、すべての工程を一気に完了できます。

すぐに、一杯のコーヒーを持ち帰って楽しむことができるようになります。

なお、上記デモ動画には加速処理は一切施しておりません。これは、ロボットが現在達成できる実際の動作速度です。

これらに加えて、自律的なエラー訂正機能も備えています。

コーヒーバッグが正しく配置されていない場合は、人間が注意しなくても自動的に調整できます。


これに対して、元 Google DeepMind 研究者(ロボットの開発者でもある)が投稿を直接転送して「いいね」し、次のように繰り返した。

エラー修正を含むすべてのアクションは完全に自律的です。

同社の創設者ブレット・アドコック氏は、これをロボット工学における ChatGPT の瞬間と呼んでいます。

この発言に全員が同意するかどうかは別として、ネットユーザーがそのトレーニング速度に感銘を受けていることは間違いない。

10 時間というのは本当に素晴らしいです。グラインダーとフレンチプレスの使用に早送りします。ビデオのコーヒー マシンはすぐに使えなくなると思います。 (手動犬頭)

それで、このロボットは一体何なのでしょうか?

コーヒーを作るための徹底的なトレーニング10時間

上の写真のロボットは、Figure という商業会社が作ったものです。

Figureは米国に本社を置き、2022年に設立された汎用ヒューマノイドロボットを専門とする企業です。

創業者のブレット・アドコックはフロリダ大学を卒業し、26歳のときにオンライン人材市場ウェブサイトを設立しました。このウェブサイトは後に同業他社に1億1000万ドルで買収されました。その後、全電動垂直離着陸機を製造する航空宇宙会社を設立し、27億ドルで株式市場に上場しました。

現在、このロボット企業 Figure は多額の利益を上げています。同社は昨年 5 月にシリーズ A 資金調達で 7,000 万ドルを獲得し、その 2 か月後には Intel から 900 万ドルの投資を受けました。

フィギュア社は設立から約1年後の昨年10月、コードネーム「フィギュア01」という初のヒューマノイドロボットをリリースした。

歩き方は次のようになります:


今日見るコーヒーの淹れ方のデモンストレーションはこれで行われます。

このスキルを習得するのにたった 10 時間のトレーニングしかかかりませんでした。

図 01 は、エンドツーエンドのニューラル ネットワークを使用しています。人間がコーヒーを作るビデオを受信し、動作の軌跡を出力することで、ロボットがそれを模倣し、最終的に自律動作を完了できるようにします。

同様に、他のタスクを学習させるには、対応するビデオを入力するだけで済みます。

具体的な実施内容については当局は明らかにしていない。

しかし、トレーニングを完了するのにたった 10 時間しかかからないという事実を除けば、ロボットにコーヒーの淹れ方を教えるといった作業自体は難しくありません。

その中核となるのは模倣学習であり、これはCoRL'22(ロボット工学、学習に関する会議)に選ばれたVIOLAによって実現できます(オブジェクト中心の模倣学習フレームワークであり、推論にはTransformerをベースとし、長距離タスクに優れ、最先端の模倣学習アルゴリズムを45.8%上回ります)。


今年6月にリリースされたGoogleのHYDRAもこの分野に特化しており、粗粒度から細粒度までさまざまな制御を得意とし、自由に切り替えることができます。

スタンフォード大学の AME はウェイポイントに基づいており、コーヒーを作るなどのタスクにも非常に便利ですが、速度ははるかに遅くなります。


ロボット模倣学習に関連する研究成果としては、NVIDIAのHITL-TAMP、MimicGenなどもあるので、一つ一つ紹介することはしません。

2040年までにスティーブコーヒーテストに成功して挑戦できるのは誰でしょうか?

図 01 のパフォーマンスは非常に優れています(たとえば、非常に高速です)が、多くのネットユーザーは次のようにコメントしています。

これは、私たちが想像するコーヒーを作るロボットとはまだ少し遠いものです。

例えば、カップを持ち上げてコーヒーマシンの下に置き、淹れた後にクリームと砂糖を加え、カップをトレイに置いて誰かのところに持って行くことはできますか?

実際、アップルの共同創業者であるスティーブ・ウォズニアック氏は、ロボットの自律性を評価するためにコーヒーテストを提案したことがある。

ロボットは、まず見知らぬ家に入り、次にキッチンを見つけ、道具(コーヒーメーカー、ケトルなど)と材料(コーヒー豆、砂糖、ミルクなど)を識別し、最後に一杯のコーヒーを淹れる必要があり、全体のプロセスは20分を超えてはなりません。

このテストでは、ロボットが未知の環境を移動し、物体を識別し、道具や材料を操作し、人間の指示に従う能力が試されます。
誰かが、2040年までにそのようなロボットが誕生できるかどうかを問う投票を開始しました。

その結果、89%の人が賛成票を投じました。

希望はあると思いますか?

<<:  注釈付きビデオの 1 フレームでセグメント機能を学習し、完全な監視パフォーマンスを実現できます。 Huake、時系列行動検出における新たなSOTAを達成

>>:  400 万のトークン コンテキスト、推論がさらに 46% 加速されました。最新のオープンソースソリューションはMITの結果をアップグレードし、推論コストをさらに削減します

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

同社はコストバランスに苦戦しており、AI部門で猛烈な採用を行い、他の部門では人員削減を行っている。

業界の専門家は、テクノロジー企業がAIへの投資を優先し、採用を急ぐため、他の分野での人員削減は202...

...

AI を活用したハイパーオートメーションがビジネス効率を向上させる方法

AI とハイパーオートメーションに期待するのには十分な理由があります。AI には、人間の思考や関連す...

【ディープラーニング連載】畳み込みニューラルネットワーク(CNN)の原理を徹底解説(I) - 基本原理

前回の記事では、PaddlePaddle を使用して手書きの数字を認識する例を示し、ネットワーク構造...

人工知能が建設業界にもたらす変化

[[349273]] AI は情報を活用して、プロジェクトの初期段階で建築家にとって重要な決定を下し...

人工知能とビッグデータを開発する際に注意すべき12のポイント

人工知能は近年の科学技術発展の重要な方向です。ビッグデータの時代において、データの収集、マイニング、...

自動運転企業Roadstar.aiはシリーズA資金調達で1億2,800万ドルを調達し、2020年までに1,500台の自動運転車を運行する予定だ。

自動運転企業Roadstar.aiは最近、 1億2,800万米ドルのシリーズA資金調達ラウンドの完了...

デザイナーが危険にさらされています! AI広告デザイン分野におけるSuningの探求と実践

[51CTO.comより引用] 人工知能時代の到来とともに、商業デザイン分野における芸術と技術の競争...

ARMベースの3DES暗号化アルゴリズムの実装(2)

ARMベースのハードウェア実装3DESアルゴリズムと一般的な組み込みアプリケーションの要件に応じて...

YouTubeがAIツールシリーズを発表:動画作成の提案、背景の生成、多言語吹き替えが可能

YouTubeは本日、クリエイターカンファレンス「Made on YouTube」において、AIを活...

運輸省:2025年までに自動運転技術の産業化を推進

道路交通自動運転技術の開発と応用の促進に関する運輸省の指導意見:道路交通の自動運転技術の開発と応用を...

GMIC 2018: DataVisor が成長中の企業に AI 不正防止機能を導入する方法

9月26日から28日まで、北京でグローバルモバイルインターネットカンファレンス(GMIC 2018)...

アルゴリズム学習実践ガイド

[[158318]]ほぼすべてのトップクラスのインターネット企業やソフトウェア企業は、ソフトウェアエ...

C# データ構造とアルゴリズムのシーケンス テーブルの簡単な分析

C# データ構造とアルゴリズムのシーケンス テーブルとは何ですか?まず、C# のデータ構造とアルゴリ...

...