OCRの終焉? Megvii は、ドキュメントレベルの OCR をサポートし、中国語と英語をサポートし、オープンソース化されたマルチモーダル大規模モデルを提案しています。

OCRの終焉? Megvii は、ドキュメントレベルの OCR をサポートし、中国語と英語をサポートし、オープンソース化されたマルチモーダル大規模モデルを提案しています。

ドキュメント画像を Markdown 形式に変換したいですか?

以前は、このタスクには、テキスト認識、レイアウトの検出と並べ替え、数式表の処理、テキストのクリーンアップなど、複数のステップが必要でした。

今回は、たった 1 つのコマンドで、マルチモーダル大規模モデルVary がエンドツーエンドで結果を直接出力します。

写真

中国語または英語の長い段落の場合:

写真

数式を含む文書の画像を以下に示します。

写真

または、モバイル ページのスクリーンショット:

写真

写真の表をLaTeX形式に変換することもできます。

写真

もちろん、マルチモードの大型モデルとして、一般的な機能も維持する必要があります。

写真

Vary は大きな可能性と非常に高い可能性を示しています。OCR はもはや長いパイプラインを必要とせず、エンドツーエンドで直接出力できます。また、ユーザーのプロンプトに応じて、LaTeX、Word、Markdown などのさまざまな形式で出力することもできます。

このアーキテクチャは、大規模モデルの極めて強力な言語事前確率を通じて、「杠」や「杜杠」など、OCR で簡単にスペルミスされる文字を回避することもできます。曖昧な文書の場合、言語事前確率の助けを借りて、より強力な OCR 効果を達成することも期待されます。

このプロジェクトは公開されるとすぐに多くのネットユーザーの注目を集め、一部のネットユーザーはそれを見た後に「ゲームを殺せ!」と叫んだ。

写真

では、この効果はどのようにして達成されるのでしょうか?

大きなモデルにインスピレーションを受けて

現在の大規模なマルチモーダル モデルのほとんどは、ビジョン エンコーダーまたは視覚語彙として CLIP を使用しています。実際、4 億の画像とテキストのペアでトレーニングされた CLIP は、強力なビジュアルとテキストのアライメント機能を備えており、ほとんどの日常的なタスクの画像エンコーディングをカバーできます。

しかし、ドキュメントレベルの OCR やチャート理解などの高密度で細粒度の認識タスクの場合、特に英語以外のシナリオでは、CLIP は明らかなエンコードの非効率性と語彙外の問題を示します。

大規模な純粋な NLP モデル (LLaMA など) が英語から中国語 (大規模なモデルにとっては「外国語」) に移行する場合、元の語彙は中国語のエンコードに非効率的であるため、より良い結果を得るにはテキスト語彙を拡張する必要があります。

研究チームにインスピレーションを与えたのは、この機能でした。

現在、CLIP ビジュアル語彙に基づくマルチモーダル大規模モデルは同じ問題に直面しています。つまり、論文内の密集したテキストのページなどの「外国語画像」に遭遇すると、画像を効率的にトークン化することが困難です。

Vary はこの問題の解決策です。元の語彙を再構築することなく、視覚的な語彙を効率的に拡張できます。

写真

既成の CLIP 語彙を直接使用する既存の方法とは異なり、Vary は次の 2 つの段階に分かれています。

最初の段階では、非常に小さなデコーダーのみのネットワークを使用して、自己回帰方式で強力な新しい視覚語彙を生成します。

次に、第 2 段階では、新しい語彙と CLIP 語彙が融合され、新しい機能を使用して LVLM を効率的にトレーニングします。

Vary のトレーニング方法とモデル構造は次のとおりです。

写真

公開データセットとレンダリングされたドキュメント チャートでトレーニングすることにより、Vary はきめ細かい視覚認識機能を大幅に強化します。

バニラのマルチモーダル機能を維持しながら、エンドツーエンドの中国語と英語の画像、数式のスクリーンショット、チャートの理解機能を刺激します。

さらに、研究チームは、本来は数千のトークンを必要とするページコンテンツが、ドキュメント画像入力を通じて Vary によって 256 個の画像トークンに圧縮され、これにより、さらにページ分析や要約を行うための想像の余地が広がることにも気付きました。

現在、Vary のコードとモデルはオープンソース化されており、誰でも試すことができる Web デモが提供されています。

興味のある友達は行ってみてください〜

<<:  マッキンゼー:2024年にGenAIが人工知能のビジネス界を支配する

>>:  Meta CTO との独占インタビュー: AI はすでに XR のキラー アプリケーションであり、LLM オープンソース コミュニティの競争には敗者なし

ブログ    
ブログ    

推薦する

...

データサイエンスに必須の Python パッケージ 10 個

[51CTO.com クイック翻訳] データサイエンスに対する人々の関心は過去 5 年間で大幅に高ま...

「編集神ヴィム」の父が死去。ネットユーザー「彼は多くの人の人生を変えた」

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

業界の証人、Pudu Roboticsが北京ケータリング調達展示会に初登場

4月21日から23日まで、北京市易創国際会議展示センターでもう一つのケータリング会議、すなわち202...

高所から物が投げ出される悲劇が多発。AI監視システム「私があなたを守ります」

近年、高所から物が投げられたり落下したりして負傷する事故が多発しています。水のボトル、スイカの皮、缶...

ファーウェイ、2020年に向けて次世代マシンビジョンカメラと新製品を発表

【中国杭州、2020年5月25日】本日、「クリエイティブビジョン | インテリジェントな世界への目を...

人工知能技術はゴミリサイクルに革命的な変化をもたらすかもしれない

新たな研究によると、最先端の人工知能が英国の廃棄物リサイクル方法に革命をもたらす可能性があるという。...

...

CLRNet: 自動運転における車線検出のための階層的改良ネットワーク アルゴリズム

車線は高レベルのセマンティクスを備えた交通標識であり、視覚ナビゲーション システムでは特に重要です。...

...

顔認識技術が明らかに、未来はもうすぐ「手の届くところ」に!

[51CTO.com からのオリジナル記事]昨日の記事「顔認識の威力はどれほどか? AIFR 技術...

数千億ドル規模の市場:教育用ロボットは本当に実現可能か?

[[341606]]ある調査では、2025年までに中国の教育用ロボット市場は3000億ドルに達し、...

自動運転の研究の方向性は間違っているのか?

1 知覚ソリューション: 純粋な視覚とマルチセンサー融合自動車が自動運転を実現するには、まず周囲を...

将来の旅行に関する最初の質問:自動運転による交通渋滞の解決策は本当に実現可能でしょうか?

交通渋滞問題は北京、上海、広州の都市脳血栓症となっている。我々の巧妙な統治の下では、都市部の道路渋滞...

効果は爆発的! OpenAIが初のビデオ生成モデルをリリース、1分間のスムーズなHDビデオ、ネットユーザー:業界全体が安らかに眠る

先ほど、ウルトラマンがOpenAI初の動画生成モデル「ソラ」をリリースしました。 DALL·E 3 ...