ScalableMap: オンラインで長距離ベクトル化された高精度マップ構築のためのスケーラブルなマップ学習

ScalableMap: オンラインで長距離ベクトル化された高精度マップ構築のためのスケーラブルなマップ学習

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転載したものです。転載については出典元にお問い合わせください。

元のタイトル: ScalableMap: オンライン長距離ベクトル化 HD マップ構築のためのスケーラブル マップ学習

論文リンク: https://arxiv.org/pdf/2310.13378.pdf

コードリンク: https://github.com/jingy1yu/ScalableMap

著者所属: 武漢大学

論文のアイデア:

本稿では、オンボードカメラセンサーを使用してオンラインの長距離ベクトル化高精度 (HD) マップを構築するための新しいエンドツーエンドのパイプラインを提案します。高精度マップのベクトル化された表現では、ポリラインとポリゴンを使用してマップ要素を表し、下流のタスクで広く使用されています。しかし、動的オブジェクト検出を参照して設計された従来の方式では、線形マップ要素内の構造的制約が無視されるため、長距離シーンではパフォーマンスが低下します。この論文では、マップ要素の特性を利用してマップ構築のパフォーマンスを向上させます。本論文では、線形構造のガイダンスの下でより正確な鳥瞰図 (BEV) の特徴を抽出し、ベクトル化されたグラフ要素のスケーラビリティをさらに活用するための階層的スパース グラフ表現を提案し、この表現に基づいて漸進的デコード メカニズムと監視戦略を設計します。私たちの方法 ScalableMap は、nuScenes データセット、特に長距離シーンで優れたパフォーマンスを発揮し、18.3 FPS を達成しながら、以前の最先端モデルを 6.5 mAP 上回りました。

主な貢献:

(i) この論文では、初のエンドツーエンドの長距離ベクトル化マップ構築パイプラインであるScalableMapを提案します。この論文では、マッピング要素の構造特性を利用してより正確な BEV 機能を抽出し、スケーラブルなベクトル化要素に基づく HSMR を提案し、それに応じてプログレッシブ デコーダーと監視戦略を設計します。これらすべてにより、優れた長距離地図認識が実現します。

(ii)ScalableMapのnuScenesデータセット[17]上でのパフォーマンスを評価するために広範な実験を実施しました。私たちが提案した方法は、長距離 HD マップ学習において最先端の結果を達成し、既存のマルチモーダル方法よりも 6.5 mAP 優れ、18.3 FPS を達成しました。

ネットワーク設計:

この論文の目的は、ベクトル化された地図要素の構造特性を活用して、より長い距離にある地図要素を正確に検出するという課題に対処することです。まず、本論文では、2 つのブランチを通じてそれぞれ位置認識 BEV 特徴とインスタンス認識 BEV 特徴を抽出し、線形構造のガイダンスの下でそれらを融合してハイブリッド BEV 特徴を取得します。次に、本論文では、マップ要素をスパースかつ正確に抽象化する階層的スパース マップ表現 (HSMR) を提案します。この表現をDETR[16]が提案したカスケードデコード層と統合し、ベクトル化されたマッピング要素のスケーラビリティと漸進的な監視戦略を活用して構造化情報の制約を強制し、推論の精度を向上させる漸進的デコーダーを設計します。当社のソリューション ScalableMap は、マップのサンプリング密度を動的に増加させてさまざまなスケールの推論結果を取得し、より正確なマップ情報をより早く取得できるようにします。

図 1: ScalableMap の概要。 (a) 構造ガイド付きハイブリッド BEV 特徴抽出器。 (b) 階層的スパースマップ表現とプログレッシブデコーダー。 (c)漸進的な監督。

図 2: 進行性ポリライン損失の視覚化。

実験結果:

引用:

Yu, J., Zhang, Z., Xia, S., & Sang, J. (2023). ScalableMap: オンライン長距離ベクトル化 HD マップ構築のためのスケーラブル マップ学習。ArXiv. /abs/2310.13378

オリジナルリンク: https://mp.weixin.qq.com/s/7VIS0B_Qbq7bmHSj6RIxOg

<<: 

>>:  Go-OpenAI を使用して ChatGPT を簡単に呼び出し、無限の創造性を解き放ちましょう。

ブログ    
ブログ    
ブログ    

推薦する

顔認識に関する国家基準が策定中:顔のスキャンは許可されず、検証後にデータは削除される必要がある

近年、顔認識技術が急速に発展し、顔をスキャンするだけで高速鉄道駅に入ることができるので非常に便利です...

WeiboにおけるSparkベースの大規模機械学習の応用

[[195122]]周知のとおり、Weibo のビジネスは 2015 年以降急速に成長しています。内...

ViT以外にも、美団、浙江大学などが、視覚タスクのための統合アーキテクチャであるVisionLLAMAを提案した。

過去 6 か月間にわたり、Meta のオープン ソース LLaMA アーキテクチャはテストされ、LL...

人工知能は伝染病との戦いに活用できるのか?

これまで、私たちは人工知能が医療業界にどのように貢献するかについて議論してきました。新型コロナウイル...

旅行業界における人工知能の未来

人工知能 (AI) は、スピード、効率、安全性、正確性を向上させることで旅行業界に大きな変化をもたら...

...

...

エンタープライズ AI の 4 つのトレンド: 現在地と今後の方向性

[[275946]]ビッグデータダイジェスト制作出典: フォーブス編纂者:張大毓人工知能は従来の産業...

新しいAI技術がアルツハイマー病の薬のターゲット発見に役立つ

人工知能は10年以上にわたって新薬の発見と開発に使用されてきました。しかし、最近の AI 技術と研究...

人工知能が人間に取って代わることは決してない

午後は、かわいい子供たちを連れて映画「頭の大きい息子と頭の小さいお父さん 完璧なお父さん」を見に行き...

...

機械学習とディープラーニングとは何ですか?ファイザン・シャイクがお手伝いします

概要: この記事では、機械学習とディープラーニングの定義と応用についてわかりやすい言葉で紹介するとと...

ChatGPTのiOS版はBing検索機能を統合しており、有料会員のみが利用可能

6月28日、OpenAIは今年5月にリリースしたChatGPTアプリのiOS版をリリースした。このア...