Microsoft AutoGenフレームワークは1万個のスターを獲得するほど人気が​​あります。インテリジェントエージェントはチャットで問題を解決できます。

Microsoft AutoGenフレームワークは1万個のスターを獲得するほど人気が​​あります。インテリジェントエージェントはチャットで問題を解決できます。

わずか 2 週間で、プロジェクトのスターの数が 390 から 10,000 に増加し、Discord で 5,000 人以上のメンバーが集まりました。この人気プロジェクトは、Microsoft が最近リリースした新しいツール AutoGen です。

AutoGen は、複数の LLM エージェントがチャットを通じてタスクを解決できるようにするフレームワークと考えることができます。 LLM エージェントは、プログラマー、デザイナー、または役割の組み合わせなど、さまざまな役割を果たすことができ、対話プロセスによってタスクが解決されます。

それだけでなく、AutoGen はカスタマイズ可能で、会話型であり、人間の関与も可能にします。 AutoGen は、LLM タスク、人間の入力、およびさまざまなツールの組み合わせを通じて機能します。

プロジェクトアドレス: https://github.com/microsoft/autogen

このプロジェクトを使用したユーザーの中には、「要件を指定して Enter キーを押すだけで、中間プロセスについてはまったく心配する必要はありません...」と非常に高い評価を与えた人もいます。

別のネットユーザーはこう言った。「AutoGen のおかげで、わずか数秒で Snake ゲームを作ることができました。」

では、誰もが熱望するこのプロジェクトの利点とは何でしょうか? 具体的には、次のとおりです。

  • AutoGen を使用すると、マルチエージェント ダイアログに基づく次世代の LLM アプリケーションを簡単に構築できます。複雑な LLM のワークフローを簡素化し、LLM モデルのパフォーマンスを最大化し、その弱点を克服します。
  • AutoGen は複数のダイアログ モードをサポートしているため、開発者は AutoGen に基づいて幅広いダイアログ モードを構築できます。
  • AutoGen は、さまざまな分野とさまざまなアプリケーションをカバーする、さまざまな複雑さの作業システムを提供します。
  • AutoGen は、拡張推論用の API として、openai.Completion または openai.ChatCompletion の代替品を提供します。

さらに、AutoGen をより効果的に使用するための多くの例がプロジェクトに示されています。たとえば、ネットユーザーによると、クローラー プログラムを実装して、Web ページの画像を取得して保存したい場合です。 ChatGPTを使用して実装した場合、実行コードが返されます。一般的に、このコードはそのまま使用することはできず、人間が修正する必要があります。ただし、このタスクを AutoGen に引き渡す場合は、それを達成するために必要なエージェントをいくつか定義するだけで済みます。

次の例は、AutoGen フレームワークを使用して MathChat で数学の問題を解決するときに、エージェントを構築する手順が実行中のコードに表示され、エージェントが初期化されることを示しています。

下の図は、数学的な問題解決、マルチエージェント コーディング、オンライン意思決定、検索拡張チャット、動的グループ チャット、会話型チェスなど、AutoGen を使用して構築された 6 つのアプリケーションの例を示しています。

AutoGen は、ChatGPT や GPT-4 などの LLM の有用性を最大限に高めるのにも役立ちます。前述のように、AutoGen は openai.Completion または openai.ChatCompletion の代替品を提供し、チューニング、キャッシュ、エラー処理、テンプレートなどの機能を追加します。たとえば、ユーザーは独自のチューニング データを使用して、予算内で LLM 生成を最適化できます。

 # perform tuning config, analysis = autogen.Completion.tune ( data=tune_data, metric="success", mode="max", eval_func=eval_func, inference_budget=0.05, optimization_budget=3, num_samples=-1, ) # perform inference for a test instance response = autogen.Completion.create (cnotallow=test_instance, **config)

上記の使用例は、さまざまな問題を解決する上で AutoGen が幅広く適用できることを示しており、開発者にとって貴重なツールとなっています。まだ体験したことがない方は、公式のインストール手順に従って試してみてください。

<<:  AI革命をリードする:企業がAIアプリケーションを推進するためのベストプラクティス

>>:  ReConフレームワークは、AIビッグモデルが嘘を検出するのに役立ちます。Avalonゲームでインテリジェントエージェントが欺瞞に対処する方法を見てみましょう。

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

顔認識を禁止した後、サンフランシスコは検察官の事件処理を支援するためにAIを活用

最近、海外メディアの報道によると、サンフランシスコ市は7月1日に導入予定の「偏見削減ツール」を発表し...

...

OpenAIは、歪んだ見解なしにAIが話すようにするために、わずか80のテキストを使用している

[[405587]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...

IoTとAIを活用して価値を加速させる4つの効果的な方法

Twitter、LinkedIn、そして多くの IoT 関連の Web サイトを見ると、モノのインタ...

インベントリ | 2018 年のトップ 10 新興テクノロジー: 人体は「医薬品工場」になる

[[244104]] Scientific American誌によると、近い将来、人工知能(AI)が...

古典的なソートアルゴリズムヒープソートの簡単な分析

ヒープは通常、(完全な) ツリーとして表示できるオブジェクトの配列です。そして、以下のルールは常に満...

...

人工知能 + ブロックチェーンの開発動向と応用研究レポート(受賞リスト付き)

[51CTO.com からのオリジナル記事] AI とブロックチェーンは現在、2 つの人気の技術方...

Cloudera は研究から実稼働までエンタープライズ機械学習を加速します

クラウド向けに最適化された機械学習および分析のための最新プラットフォームを提供する Cloudera...

...

自動運転に関する毎年恒例の議論:量産化は3つの要因によって推進され、その本質はデータ軍拡競争である

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

AI+IoT: インテリジェント IoT (インダストリー 4.0 を含む) の需要が高い 5 つの業界

未来のスマートワールドでは、あらゆるものがモノのインターネットでつながり、あらゆるものがインテリジェ...

...