CTOは「大きな衝撃を受けた」:GPT-4Vの自動運転テストを5回連続で実施

CTOは「大きな衝撃を受けた」:GPT-4Vの自動運転テストを5回連続で実施

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

皆様の注目の下、GPT4 は本日ついに視覚関連の機能をリリースしました。

今日の午後、私は友人たちと一緒に GPT の画像認識機能をテストする機会を得ました。予想はしていましたが、それでも大きな衝撃を受けました。

中核となるアイデア:

自動運転における意味関連の問題は大規模モデルによって十分に解決されているはずだが、大規模モデルの信頼性と空間認識能力はまだ不十分であると思う。

効率性に関するいわゆるコーナーケースを解決するには十分すぎるはずですが、大型モデルに完全に依存して運転を自立的に完了し、安全性を確保するにはまだ長い道のりがあります。

例1: 道路上に未知の障害物が現れた

△ GPT4の説明

正確な部分:3台のトラックが検出され、前方車両のナンバープレートの番号は基本的に正確であり(漢字は無視)、天候と環境は正確であり、前方の未知の障害物はプロンプトなしで正確に識別されました

不正確な部分: 3 台目のトラックの位置が左右の区別がつかず、2 台目のトラック上部のテキストがランダムな推測になっています (解像度が不十分なため?)。

これだけじゃ十分ではありません。引き続きヒントを与え、この物体が何なのか、そして押すことができるのかどうかを尋ねます。

印象的な!同様のシナリオをいくつかテストしましたが、未知の障害物に対するパフォーマンスは驚くべきものでした。

例2: 道路冠水に関する理解

何も指示しなくても自動的に標識を認識できることは基本的な操作です。引き続きヒントをいくつか提供しましょう。

またショックを受けました。 。 。トラックの後ろの霧と水たまりについては自動的に言及できましたが、方向はやはり左と示されました。 。 。 GPT が位置と方向をより適切に出力できるようにするには、ここで迅速なエンジニアリングが必要になる可能性があると感じています。

例3: 車両が方向転換してガードレールに衝突した

最初のフレームが入力されると、タイミング情報がないため、右側のトラックは単に駐車されているとみなされます。ここに別のフレームがあります:

この車がガードレールを突き破って道路の端に浮かんでいるのがすぐにわかります。すごいですね。 。 。しかし、簡単に思えた道路標識は間違っていました。 。 。これは巨大なモデルだとしか言えません。常に衝撃を与え、いつ涙を流すことになるか分かりません。 。 。別のフレーム:

今回、彼は道路上の瓦礫について直接話し、改めて驚いていました。 。 。ただ一度だけ、道路の矢印を読み間違えただけなんです。 。 。全体的に、このシーンで特に注意が必要な情報は網羅されており、道路標識の問題は欠陥によって上回られることはありません。

例4: 面白い例をやってみよう

非常によくできているとしか言いようがありません。それに比べると、以前は非常に難しかった「誰かがあなたに手を振った」というケースは、今では子供の遊びのように簡単です。これは、セマンティックコーナーケースで解決できます。

例5 有名なシーンを見てみましょう。 。 。配送トラックが誤って新しい道路に入る

私は当初は比較的保守的だったので、原因を直接推測することはしませんでした。代わりに、アライメントの目標に沿って複数の推測をしました。

CoT を使用した後、問題は車が自動運転車であることを知らなかったことであり、プロンプトを通じてこの情報を提供することでより正確な情報を提供できることがわかりました。

最後に、一連のプロンプトを通じて、新しく舗装されたアスファルトは運転に適していないという結論を出力できます。最終結果は問題ありませんが、プロセスはかなり複雑で、より迅速なエンジニアリングと慎重な設計が必要です。

これは、写真が最初の視点からのものではなく、3 番目の視点からのみ推測できるためであると考えられます。したがって、この例はあまり正確ではありません。

要約する

いくつかの簡単な試みにより、GPT4V のパワーと一般化パフォーマンスが完全に実証されました。適切なプロンプトにより、GPT4V の強みを完全に実証できるはずです。

意味上のコーナーケースを解決することは非常に有望ですが、セキュリティ関連のシナリオでは、幻覚の問題が依然として一部のアプリケーションに影響を及ぼすことになります。

とても楽しみです。このような大規模なモデルを合理的に使用することで、L4、さらにはL5の自動運転の開発が大幅に加速されると個人的には思っています。しかし、LLMは直接運転する必要がありますか?特にエンドツーエンドの運転は依然として議論の余地のある問題です。

<<:  21 歳の SpaceX インターンが AI を使って大規模な考古学的事件を解決し、4 万ドルを獲得しました。

>>: 

ブログ    
ブログ    
ブログ    

推薦する

無人バスに乗ってみませんか?テクノロジーは未来を変えることができるでしょうか?

無人運転車の概念は古くから存在し、無人運転車は時折ニュースの見出しにも登場します。しかし、無人運転車...

ファーウェイがAI戦略とフルスタックの全シナリオAIソリューションを発表

[中国、上海、2018年10月10日] 第3回HUAWEI CONNECT 2018(ファーウェイ・...

従来の不正検出ソリューションは機能していません。中小企業はどのようにして不正を防止できるでしょうか?

[51CTO.com からのオリジナル記事] モバイル インターネットの発展の初期から現在に至るま...

MITの中国人博士課程学生がChatGPTをJupyterに移行し、自然言語プログラミングをワンストップソリューションに

自然言語プログラミングは Jupyter で直接実行できます。 MIT の中国人博士課程の学生によっ...

感染症の流行に直面して、AIがいかに有用であるかを実感した

インターネット時代では、テクノロジーの発展により、私たちの生活で利用できる手段が大幅に強化されました...

BLIP-2とInstructBLIPがトップ3にランクイン! 12の主要モデル、16のリスト、「マルチモーダル大規模言語モデル」の総合評価

マルチモーダル大規模言語モデル (MLLM) は、LLM の豊富な知識蓄積と強力な推論および一般化機...

Snapdragon 8の4倍のAIコンピューティングパワーハードテクノロジー:超解像度アップと信号強化ダウン、複数のアルゴリズムを同時に実行

2022年の携帯電話はこうなります。すべてのメッセージを自動的に整理し、QRコードをスキャンするため...

市場規模は約16.8億元に達しました!物流と配送がドローンと出会う

現在、ナビゲーションや通信などの技術が継続的に進歩し、ドローンの開発はより成熟し、業界の規模も拡大し...

これは機械学習ツールに関する最も包括的なハンドブックかもしれません。

[[419906]]私はこれまで、人工知能とデータサイエンスのオープンソース プロジェクトを数多く...

...

AIを活用した臨床モニタリングシステムの台頭

人工知能(AI)は生活のあらゆる分野に浸透しています。人工知能は医療にどのようなメリットをもたらすの...

ブロックチェーンは自動運転車の開発を促進できるか? BMW、GM、フォードはいずれも

来月、大手自動車メーカーのグループが米国でブロックチェーンベースの車両識別ネットワークの初のフィール...

フォード・オブ・ヨーロッパ、ロボット運転手を試験的に導入

海外メディアの報道によると、欧州フォードはロボットテストドライバーを導入し、自動化に向けて新たな一歩...

...