データ拡張のための 10 個の Python ライブラリ

データ拡張のための 10 個の Python ライブラリ

データ拡張は、人工知能と機械学習の分野における重要な技術です。モデルのパフォーマンスと一般化を向上させるために、既存のデータセットのバリエーションを作成します。 Python は、いくつかの強力なデータ拡張ライブラリを提供する人気の AI および ML 言語です。この記事では、データ拡張用の 10 個の Python ライブラリを紹介し、各ライブラリのコード スニペットと説明を示します。

オーグメンター

Augmentor は、画像拡張用の汎用 Python ライブラリです。回転、反転、色の操作など、さまざまな操作を画像に簡単に適用できます。以下は、Augmentor を使用して画像拡張を行う方法の簡単な例です。

 import Augmentor p = Augmentor.Pipeline("path/to/your/images") p.rotate(probability=0.7, max_left_rotatinotallow=25, max_right_rotatinotallow=25) p.flip_left_right(probability=0.5) p.sample(100)

アルバムメンテーション

Albumentations Master は、ランダム回転、反転、明るさ調整などのさまざまな機能強化をサポートしています。これは私が最もよく使用する拡張ライブラリです。

 import albumentations as A transform = A.Compose([ A.RandomRotate90(), A.HorizontalFlip(), A.RandomBrightnessContrast(), ]) augmented_image = transform(image=image)["image"]

イムガウグ

Imgaug は画像やビデオを強化するためのライブラリです。幾何学的変換や色空間の変更など、幅広い拡張機能を提供します。 Imgaug の使用例を次に示します。

 import imgaug.augmenters as iaa augmenter = iaa.Sequential([ iaa.Fliplr(0.5), iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0, 2.0))), iaa.ContrastNormalization((0.5, 2.0)), ]) augmented_image = augmenter.augment_image(image)

nlpaug

nlpaaug は、テキスト データの拡張専用に設計されたライブラリです。同義語の置換や文字レベルの置換など、テキストのバリエーションを生成するためのさまざまな手法を提供します。

 import nlpaug.augmenter.word as naw aug = naw.ContextualWordEmbsAug(model_path='bert-base-uncased', actinotallow="insert") augmented_text = aug.augment("This is a sample text.")

画像拡大

imgauge は、画像の強化に重点を置いた軽量ライブラリです。使いやすく、回転、反転、色調整などの操作が可能です。

 from imgaug import augmenters as iaa seq = iaa.Sequential([ iaa.Fliplr(0.5), iaa.Sometimes(0.5, iaa.GaussianBlur(sigma=(0, 2.0))), iaa.ContrastNormalization((0.5, 2.0)), ]) augmented_image = seq(image=image)

テキストアタック

TextAttack は、自然言語処理 (NLP) モデルを拡張および攻撃するための Python ライブラリです。 NLP タスクの敵対的サンプルを生成するためのさまざまな変換を提供します。使い方は次のとおりです:

 from textattack.augmentation import WordNetAugmenter augmenter = WordNetAugmenter() augmented_text = augmenter.augment("The quick brown fox")

TAAE

Text Augmentation and Adversarial Examples (TAAE) ライブラリは、テキスト拡張の​​ためのもう 1 つのツールです。同義語の置換や文のシャッフルなどのテクニックが含まれます。

 from taae import SynonymAugmenter augmenter = SynonymAugmenter() augmented_text = augmenter.augment("This is a test sentence.")

オーディオメンテーション

Audiomentations はオーディオ データの強化に重点を置いています。サウンド処理を伴うタスクに不可欠なライブラリです。

 import audiomentations as A augmenter = A.Compose([ A.PitchShift(), A.TimeStretch(), A.AddBackgroundNoise(), ]) augmented_audio = augmenter(samples=audio_data, sample_rate=sample_rate)

イメージデータオーグメンター

ImageDataAugmentor は画像データの拡張用に設計されており、一般的なディープラーニング フレームワークとうまく連携します。 TensorFlow での使用方法は次のとおりです。

 from ImageDataAugmentor.image_data_augmentor import * import tensorflow as tf datagen = ImageDataAugmentor( augment=augmentor, preprocess_input=None, ) train_generator = datagen.flow_from_directory("data/train", batch_size=32, class_mode="binary")

Keras イメージデータジェネレータ

Keras は、Keras と TensorFlow を使用する際の画像拡張のための組み込みソリューションである ImageDataGenerator クラスを提供します。

 from tensorflow.keras.preprocessing.image import ImageDataGenerator datagen = ImageDataGenerator( rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode="nearest", ) augmented_images = datagen.flow_from_directory("data/train", batch_size=32)

要約する

これらのライブラリは、画像やテキストデータに対する幅広いデータ拡張技術をカバーしており、皆さんのお役に立てば幸いです。

<<:  人工知能は将来の建築をどのように変えるのでしょうか?

>>:  大規模言語モデルの効率的なパラメータ微調整 - BitFit/Prefix/Prompt 微調整シリーズ

ブログ    

推薦する

iQIYI CTO 唐星氏:AIはビデオプロセス全体にわたって実行され、理解と意思決定を開発する必要がある

[51CTO.com からのオリジナル記事] 歴史が示しているように、コンテンツの各形態は多数のイン...

人工知能にブレーキをかけるべき6つの理由

人工知能は徐々にビジネスプロセスに導入されつつあります。しかし、CIO は立ち止まって、AI ツール...

GoogleはGoogleアシスタントを生成AIでアップデートする予定

8月1日、海外メディアは、Axiosの報道によると、GoogleはGoogleアシスタントを生成AI...

10億のデータから数字を素早く見つける方法 | 定番アルゴリズムBitMapの詳しい説明

序文多くの人は、BitMap は文字通りビットマップを意味すると考えています。実際、より正確には、ビ...

...

AI人材の競争は軍拡競争となっている。AIの創造性競争に賭けるAI大手の中で、勝利のポイントを獲得するのはどれだろうか?

世界中の人工知能の人材が徐々に量産モードに入りつつあります。今年6月、百度と浙江大学は、潜在的な人工...

Google Cloud AI が機械学習にどのように役立つかを包括的に説明します

[51CTO.com クイック翻訳] 調査によると、Google Cloud AI および機械学習プ...

Java プログラミング スキル - データ構造とアルゴリズム「スレッド バイナリ ツリー」

[[388829]]まず質問を見てみましょうシーケンス{1,3,6,8,10,14}を二分木に構築...

斉燕傑:Sina Weibo のパーソナライズされたプッシュにおける機械学習の応用

[51CTO.comより引用] Sina Weiboは情報交換プラットフォームであるだけでなく、メデ...

...

インテリジェントなデザインの4台の馬車が牽引する蘇寧木牛のクリエイティブな共有

[51CTO.comより] 蘇寧木牛は蘇寧人工知能研究開発センターが設計したインテリジェントデザイン...

プリンストン・インフィニゲン・マトリックスが始動! AI Creatorが爆発するほどリアルな100%自然を創造

ネオは、自分が住んでいる世界が現実ではなく、綿密に設計されたシミュレーションであることを発見します。...

...

機械学習初心者必読 | scikit-learn を使ったモデル構築のためのユニバーサル テンプレート

独自の機械学習モデルを構築するには、次の 2 つの手順だけが必要です。解決する必要がある問題の種類と...