方向を理解し、座標を伝える、Shikraはマルチモーダルな大規模モデル参照ダイアログの新しい次元を開きます

方向を理解し、座標を伝える、Shikraはマルチモーダルな大規模モデル参照ダイアログの新しい次元を開きます

人間の日常的なコミュニケーションでは、場面内のさまざまな領域や物体に焦点が当てられることが多く、これらの領域を話したり指さしたりすることで効率的に情報を交換することができます。この対話モードは参照対話と呼ばれます。

MLLM がこのスキルに優れていれば、多くのエキサイティングなアプリケーションが生まれるでしょう。例えば、Apple Vision Proなどの複合現実(XR)グラスに適用すると、ユーザーは視線を使って何かを指したり、AIに話しかけたりできるようになります。同時に、AI はハイライト表示などの形式を通じて特定の領域を指し示し、ユーザーとの効率的なコミュニケーションを実現することもできます。

本論文で提案されている Shikra モデルは、位置入力を理解し、位置出力を生成できる参照対話機能を MLLM に提供します。

写真

  • 論文アドレス: http://arxiv.org/abs/2306.15195
  • コードアドレス: https://github.com/shikras/shikra

主なハイライト

Shikra は、ユーザーが入力したポイント/バウンディングボックスを理解し、ポイント/バウンディングボックスの出力をサポートし、人間との参照対話をシームレスに行うことができます

Shikra は、追加の位置エンコーダ、前面/背面オブジェクト検出器、外部プラグイン モジュール、さらには追加の語彙さえも必要としない、シンプルでステッチのない設計です

写真

上図のように、Shikraはユーザーの入力の位置づけ領域を正確に把握し、出力では入力時とは異なる領域を参照してコミュニケーションできるため、人間と同じように会話や位置づけを通じて効率的にコミュニケーションを行うことができます

写真

上図に示すように、Shikra は LLM の基本的な常識をすべて備えているだけでなく、位置情報に基づいて推論を行うこともできます。

写真

上の画像に示すように、Shikra は画像内で何が起こっているかの詳細な説明を生成し、参照オブジェクトの正確な配置を作成できます。

Shikra は OCR データセットについて特別にトレーニングされているわけではありませんが、基本的な OCR 機能も備えています。

その他の例

写真

その他の伝統的な作業


方法

モデルアーキテクチャは、ビジュアルバックボーンとしてCLIP ViT-L/14を使用し、基本言語モデルとしてVicuna-7/13Bを使用し、線形マッピングのレイヤーを使用してCLIPとVicunaの特徴空間を接続します。

Shikra は、自然言語の数字を直接使用してオブジェクトの位置を表し、[xmin、ymin、xmax、ymax] を使用して境界ボックスを表し、[xcenter、ycenter] を使用して領域の中心点を表します。領域の xy 座標は、画像サイズに応じて正規化されます。デフォルトでは、各数値の小数点以下は 3 桁になります。これらの座標は、モデルの入力シーケンスと出力シーケンスのどこにでも出現する可能性があります。座標を記録するための角括弧も文章中に自然に現れます。

実験結果

Shikra は、従来の REC、VQA、キャプション タスクで優れたパフォーマンスを実現できます。同時に、位置入力の理解を必要とする PointQA-Twice や Point-V7W などの VQA タスクでも SOTA 結果が達成されました。

写真

この論文では、POPE ベンチマークを使用して、Shikra が幻覚を引き起こす程度を評価します。 Shikra は InstrcutBLIP と同等の結果を達成し、他の最近の MLLM をはるかに上回ります。

Chain of Thought (CoT) は、最終的な回答の前に推論プロセスを追加することで、LLM が複雑な QA の質問に答えられるように設計されています。この技術は、自然言語処理のさまざまなタスクで広く使用されています。ただし、マルチモーダルシナリオで CoT をどのように適用するかについては、まだ研究が必要です。特に、現在の MLLM では視覚幻覚に関する深刻な問題が依然として残っているため、CoT では幻覚を頻繁に経験し、最終的な答えの正確性に影響を及ぼします。合成データセット CLEVR での実験を通じて、この研究では、位置情報を備えた CoT を使用すると、モデルの幻覚を効果的に減らし、モデルのパフォーマンスを向上できることがわかりました。

結論は

この論文では、自然言語で空間座標を理解して出力する、Shikra と呼ばれるシンプルで統一されたモデルを紹介します。これにより、追加の語彙、位置エンコーダー、または外部プラグインを導入することなく、MLLM に人間のような参照会話機能が追加されます。

<<:  Appleは、インダストリー4.0の発展を加速するために韓国で初の中小企業スマート製造フォーラムを開催した。

>>:  マイクロソフト、AIを活用してがんの放射線治療時間を短縮:スキャン速度が2.5倍に向上、精度は90%に

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

ヤン・ルカン:私は畳み込みニューラルネットワークの父ですが、その特許にも縛られてきました

[[409963]]学術研究の特許所有権は、研究者の研究成果を保護し、保証するものであるため、研究者...

...

「最強の7Bモデル」論文が発表され、ラマ2の13Bバージョンを超える方法が明らかになった

「欧州OpenAI」の「最強の7Bオープンソースモデル」であるMistralは、最近、数え切れないほ...

現時点で最も包括的なPythonの採用方針

Pythonは、コンパイル速度が超高速なオブジェクト指向プログラミング言語です。誕生から25年が経ち...

...

3Dデモを使用してさまざまな最適化アルゴリズムを理解します。これはC++プログラマーにとって朗報です。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

報告書:人工知能は5年以内に人間の雇用を著しく脅かすだろう

ある報告書によると、自動化と人工知能は最大5年以内に人間の雇用を脅かすことになるという。このような状...

Cacti パーセンタイル監視アルゴリズム

Cactiパーセンタイル監視アルゴリズムcacti のテンプレート自体はハードディスクの使用サイズし...

今日のアルゴリズム: 文字列内の単語を反転する

[[423004]]文字列が与えられたら、文字列内の各単語を 1 つずつ逆にします。例1:入力: 「...

写真の中のキャラクターを動かしたり歌わせたりできます!このAIブラックテクノロジーは台無しになった

最近、動画サイトをよく見ている人は、とても不思議でワクワクするものを見たことがあるかもしれません。具...

分散型コンセンサスアルゴリズム: 想像以上に複雑

1. 分散システムの難しさ張大鵬は難しい問題に遭遇した。彼らの会社には貴重なデータを保存しているサー...

...

...

彼女に転送してください!文系女子でもわかるAIガイドライン

マッキンゼーのデータによれば、人工知能は今後10年間で米国に約13兆ドルの新たなGDPを生み出すだろ...