推薦する

AI時代、私たちは将来の仕事にどう備えればいいのでしょうか?

将来のテクノロジーとそれによって可能になるかもしれない新しいタイプの仕事について多くのことが書かれて...

...

...

...

ジェネレーティブAIはCIOにとって成否を分ける瞬間

IT リーダーは、まずユースケースに合わせて戦略を最適化し、次世代 AI の可能性と落とし穴を実用的...

自動運転の国家基準が導入される。2021年はレベル3自動運転車元年となるか?

自動運転は間違いなく自動車の究極の開発トレンドとなるため、多くのメーカーが現在、自動運転車の開発に多...

工場に産業用 IoT テクノロジーを導入する 5 つの理由

モノのインターネット(IoT)はどこにでもあります。実際、ここ数年、スマート製造、サプライ チェーン...

...

618プロモーション期間中のHuiceの加盟店向けサービスは新たな高みに達し、インテリジェントなアップグレードで明らかな優位性を獲得した。

ポスト疫病時代において、オンライン経済は本格化し、電子商取引業界は新たな発展段階に入りました。業界で...

PyTorch から Mxnet まで、7 つの主要な Python ディープラーニング フレームワークを比較

[[184728]]最近、Data Science Stack Exchange の「ニューラル ネ...

...

AutoML 2.0: データ サイエンティストは時代遅れか?

AutoML はここ数年で急速に成長しました。そして、景気後退が避けられない状況となった今、人工知...

創造性がデジタル変革を推進する

人工知能はビジネス環境を一新し、競争環境を変え、仕事の本質を変革しています。しかし、人間の創造性も ...

スタンフォード大学がトランプ政権のCTOと会談: AI、移民、技術インフラなどについて

[[282007]] ▲写真:スタンフォード大学のアイリーン・ドナホー氏(左)が、米国政府の最高技術...

人工知能とデータ分析の新たなトレンド

明らかに、AI とデータ分析の世界はダイナミックな変化の真っ只中にあります。将来は、イノベーションと...