2022 年に AI が組織のランサムウェア防御を強化する方法

2022 年に AI が組織のランサムウェア防御を強化する方法

ランサムウェアは個人や企業にとって深刻な脅威になりつつありますが、人工知能はそれを軽減するのに役立ちます。

人間が操作するランサムウェア攻撃では、脅威アクターが特定の方法を使用してデバイスに侵入します。ネットワークへの侵入には、キーボードの直接操作が頼りになります。

AI は、このような攻撃やその他の攻撃が発生した場合にあなたを保護できます。意思決定はデータに基づいて行われるため、攻撃の被害者になる可能性は低くなります。これらの決定は、顧客体験を変えずに効率を向上させるための広範な実験と調査に基づいています。

AI を使用すると、デバイスのリスク スコアは単一のメトリックに依存しません。むしろ、さまざまな特性やパターンの影響を受けます。攻撃が起こりそうになると警告します。

攻撃者が未知のファイルや無害なファイルを使用した場合でも、AI システムによりプロセスやファイルが起動されないようにします。 2021 年に AI がランサムウェア防御を強化する方法をいくつか紹介します。

1. 機器が危険にさらされているかどうかを予測する

ランサムウェアの除去は素晴らしいですが、攻撃を防ぐことのほうがさらに重要です。デバイスが侵害された場合、注意すべき兆候がいくつかあります。それらは単独では大した意味を持ちませんが、時間が経つにつれて非常に意味のあるものになります。

新しい信号が検出されると、AI 駆動型保護がデバイスを評価します。したがって、リスク スコアは常にそれに応じて調整されます。注意すべきシグナルには、マルウェアの遭遇、行動の侵害、脅威などがあります。

デバイスが実際には危険であるにもかかわらず、誤って「危険ではない」と評価された場合、攻撃者は検出技術では捕捉しにくいアクティビティを実行できる可能性があります。一方、実際には危険ではないデバイスが危険であると判断された場合、顧客エクスペリエンスは損なわれます。

人工知能技術は完璧なバランスを見つけました。顧客エクスペリエンスに影響を与えることなく、デバイスが危険にさらされているかどうかを判断できます。

2. 正当な文書やプロセスの不正使用を特定し防止する

人間が操作するランサムウェア攻撃には、キーボードを操作するフェーズがあります。このフェーズでは、攻撃者は正当なファイルとプロセスを悪用します。

たとえば、ネットワーク列挙は本来無害な動作です。ただし、感染したデバイス上でこれを観察すると、攻撃者が偵察活動を行っていたことが証明される可能性があります。

適応型保護は、ネットワーク列挙を防止するように設計されています。攻撃チェーンを遮断し、さらなる攻撃を防ぎます。

3. パーソナライゼーションとシーン保護

クラウド上のブロック メカニズムは、リアルタイムのリスク スコアの計算に非常に敏感です。これは、システムがインテリジェントな決定を下せることを意味します。デバイスの状態やシーンがブロックされる可能性があります。

人工知能による保護のカスタマイズにより、各デバイスに独自のレベルの保護が確保されます。たとえば、プロセス A は 1 つのデバイスでは許可され、別のデバイスではブロックされる場合があります。すべてはリスクスコアに依存します。

パーソナライズ機能は顧客にとって特に便利です。偽陰性や偽陽性が出る可能性が低くなります。データセットでトレーニングされた ML モデルとは異なり、各デバイスは必要なレベルの保護を受けます。

4. ランサムウェアのペイロードを阻止する

一部の攻撃は中間段階を通過するまで検出またはブロックされません。 AI 駆動型の適応型保護により、最終的なランサムウェア ペイロードから多くの価値を引き出すことができます。

デバイスがすでに侵害されている場合、AI 駆動型保護システムは自動的にアグレッシブ モードを使用してランサムウェアのペイロードをブロックします。重要なデータやファイルの暗号化を防ぎます。攻撃者が身代金を要求することは不可能です。

2022 年にランサムウェア防御を強化しようとしていますか? 取り組みを強化するために人工知能の使用を検討してください。デバイスが危険にさらされているかどうかを予測し、ランサムウェアのペイロードを阻止し、パーソナライズされた保護を提供することで機能します。実際の攻撃に対処するよりも、こうした攻撃を防ぐ方がビジネスにとってははるかに簡単です。ランサムウェア攻撃が成功すると、時間とデータの両方が失われる可能性があります。

結論は

近年、ランサムウェアは非常に深刻な問題になっています。良いニュースとしては、人工知能の進歩が企業の自己防衛に役立っていることです。 AI を第一の防御線として使用することの重要性を見逃してはなりません。

<<:  ガートナー、2022年の銀行・投資サービスにおける3つの注目のテクノロジートレンドを発表

>>:  人工知能プラットフォームソリューションにおける品質エンジニアリング設計

ブログ    
ブログ    

推薦する

自動運転ソリューションプロバイダーは高精度マップをどのように活用するのでしょうか?

テクノロジー大手のBATから市場に参入する多数の新興企業まで、業界には10社を超える高精度地図サプラ...

テクノロジーを活用して伝染病と闘う上で、人工知能はどのような役割を果たすのでしょうか?

業界の需要が変化するにつれて、5G、AI、ビッグデータなどの新しいテクノロジーが登場し、従来の業界に...

ChatGPT を使用すると、開発と学習の効率が向上するだけでなく、奥さんとの関係にも役立ちますか?

2024年初頭にChatGPTが人気を博して以来、コーディングを支援するさまざまなAIGCツールに...

複雑な課題に対するスマートなソリューション: 自動化の成功への道

マッキンゼーの「2022年世界産業用ロボット調査」によると、産業企業は世界的な労働力不足に対処するた...

テレンス・タオ:不等式定理を証明するためにGPT-4を使いました。論文はarXivにアップロードされます。

有名な数学者テレンス・タオ氏はここ数か月、ChatGPTやGPT-4などのAIツールを使用して数学の...

4090はA100の代替品になるのでしょうか?トークン生成速度はA100よりわずか18%低い。上海交通大学の推論エンジンが人気。

それだけでなく、PowerInfer は、モデルの精度を維持しながら、単一の RTX 4090 (2...

AIは多くの仕事を「置き換える」のでしょうか?

コンピュータが人間の囲碁の名人と対戦していたとき、コンピュータは数年連続で世界チャンピオンに勝つこと...

Hiveテクノロジーイノベーションカンファレンスは、ドローン技術の進化とビジネスモデルの革命をリードします

2018年1月23日、北京ハイブアグロテック株式会社(以下、ハイブロボティクス)は、JDグループ本社...

GPT-4 脳を解読する 0 コード!海外のネットユーザーがLLMのガードレールを突破し、AIに段階的に爆弾を作らせる

ネットユーザーが何か新しいものを思いつきました! OpenAI は大規模言語モデルの安全ガードレール...

テンセントが独自開発したHunyuanモデルが正式にリリースされ、Tencent Cloudを通じて一般に公開されました。

国産大型モデルはパラメータ優先から実用性優先へとシフトし、長期化期に入っている。 9月7日、2023...

4Dミリ波レーダーSLAMソリューション研究

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

来年のIT投資の見通しは有望です。成長率はGDPの3倍です。 CIOの75%がAIへの支出を増やす

現在、世界経済の回復は依然として緩やかです。国際通貨基金(IMF)が最近発表した世界経済見通しレポー...

エントリーレベルのデータベースアルゴリズム [パート 3]

前回は著者の指示に従って、データ構造におけるクエリ アルゴリズムといくつかのソート アルゴリズムを確...

人工知能について知っておくべきことすべて

人工知能は今日最も話題になっている技術の一つです。しかし、それは正確には何でしょうか?なぜ気にする必...

人工知能の時代において、自己成長と教育においてどのような取り組みがなされるべきでしょうか?

近年、私たちは時代の広大さと大きな変化を痛感しています。潮流の下では、個人は泥や砂のように小さく、そ...