誇大広告か、効率か?サイバーセキュリティにおける人工知能の実用的応用

誇大広告か、効率か?サイバーセキュリティにおける人工知能の実用的応用

サイバーセキュリティにおける人工知能をめぐる誇大宣伝は、多くの専門家の間で不満を引き起こしています。人工知能はどれほど大きな役割を果たすのでしょうか?それとも、AI は高い期待に応えられなかったために、単に疑いの目で見られているのでしょうか?今日は、ネットワーク セキュリティの分野における人工知能の実際の応用について見ていきます。

人工知能の典型的な使用例

1. 悪意のあるコードの検出

悪意のあるコードの変更速度は、シグネチャを手動で更新するだけでは解決できなくなりましたが、人工知能技術を使用して構築された分類器は、更新なしでほとんどの新しいマルウェア サンプルを検出できます。

2. 権限管理

権限管理はサイバー攻撃における大きな脆弱性です。同様に、人工知能はセキュリティ担当者を複雑な権限管理作業から解放することができます。たとえば、ユーザーがアクションを試み、ブロックされた場合、AI は権限管理者のように推論できます。

3. 攻撃対象領域の管理

Web、API、IP、DNS、コンテナ...組織内のさまざまな資産や脆弱性を識別、追跡、監視し、脅威インテリジェンスに接続して攻撃をリアルタイムで捕捉して分析したい場合、これらすべては人工知能なしでは想像できません。

4. 脅威の検出と対応

従来の徹底的な防御技術では捉えられない攻撃手法には、異常な動作の検出が必要です。つまり、人工知能です。

つまり、ネットワーク セキュリティ、侵入検知、ネットワーク監視など、単純で反復的で大規模な作業は、人工知能なしでは実行できないということです。ネットワーク セキュリティにおける人工知能の役割は、直感的に認識することが難しいため、さらに疑問視されるようになりました。たとえば、スマートデバイスでの生体認証、悪意のあるクローラー対策、電子メールのフィッシングなどです。上記の 4 つの一般的なユースケースに加えて、スパム/悪意のあるメールの検出とビジネス詐欺対策 (Shushi Consulting の機能マップではオンライン ビジネス セキュリティと呼ばれています) も、セキュリティ分野で一般的に認識されている 2 種類の成功したアプリケーションです。

しかし同時に、AI はバックエンド処理で優れたパフォーマンスを発揮し、ユースケース開発の自動化と速度を大幅に向上できる一方で、その分析機能と自動応答の関係はまだ十分に成熟していないことも認識する必要があります。

最後に、「AI内蔵」のネットワークセキュリティ製品を購入する際、ユーザーは人工知能がセキュリティチームの仕事を代替することを期待したり、人工知能を過度に避けたりすべきではありません。結局のところ、ダイナミクス、スピード、規模が絶えず拡大している攻撃環境において、人工知能は効果的な防御を確立するための鍵となります。しかし同時に、組織は忍耐強く、人工知能技術を磨く人材に投資する必要があります。実現可能で持続可能かつ効果的な人工知能を確立するために必要な手順は、最終的には組織内の人々によって決定されます。

レビュー

近い将来、デジタルの世界では、個人や組織が得られる利益はすべて、人間の知性と人工知能の結合度によって決まるでしょう。

<<:  DALL·Eの超進化により、写真の品質と芸術性が大幅に向上し、写真をシームレスに修正することもできるようになりました。

>>:  マイクロソフトは、ほぼ100年前の量子理論の新たな証明を示した。

ブログ    
ブログ    
ブログ    

推薦する

水注入、ピット占拠、ナンセンス:機械学習の学術界における「疑似科学」

[[236693]]ビッグデータダイジェスト制作翻訳者:張秋月、郝貴儿、倪倩、飛、ヴァージル、銭天...

...

データが多すぎたり、乱雑すぎたり、複雑すぎたりしていませんか?このようなデータガバナンスプロセスが必要です

機械学習の基盤となるデータは、GB、TB、PB と数え切れないほど増加してきました。現在、より大規模...

ディープラーニングチップ研究の新潮流:処理の中核となるメモリ

[[186777]]過去 2 年間、機械学習、特にディープ ニューラル ネットワークのニーズを満たす...

NLP事前トレーニングパラダイムが統合され、下流のタスクタイプに絡まらなくなり、Googleの新しいフレームワークは50のSOTAを更新します

この論文では、Google の研究者がさまざまな事前トレーニング パラダイムを統合する事前トレーニン...

150億のパラメータを持つ、史上最大のビジュアルモデル「V-MoE」の全コードをGoogleがオープンソース化

昨年 6 月に Google Brain チームが発表した 43 ページの論文「Scaling Vi...

ロボットは共感を持つことができるか?感情AIはどれくらい使えるのか?

ポータブル AI アプリケーションといえば、まず Siri、Alexa、Google Assista...

...

AIが機密情報を保護する5つの方法

人工知能(AI)は、業務の効率化に欠かせないツールであるだけでなく、機密情報の保護にも重要な役割を果...

心でタイピング、中国で脳コンピューターインターフェースの新記録が樹立されました!

手やキーボードを使わず、思考だけに頼って、1分間に691.55ビットをコンピューター画面に出力できま...

JVM メモリ管理 - GC アルゴリズムの詳細な説明

導入究極のアルゴリズムとは何ですか?実際、これは現在の JVM で使用されているアルゴリズムであり、...

...

2022 年のヘルスケアと医薬品における AI の予測

市場の一流専門家によると、AI は病院の運営、新薬の発見、超音波検査を改善する可能性を秘めています。...

単眼輝度画像を用いた顔深度マップ推定のための敵対的アーキテクチャによるディープラーニング

本論文では、単眼輝度画像から顔の深度マップを推定する敵対的アーキテクチャを提案する。 画像対画像のア...

...