最近、ByteDanceの応用機械学習チームは、veGiantModelという大規模モデルトレーニングフレームワークをオープンソース化しました。このトレーニングフレームワークは、主に自然言語処理分野の大規模モデルトレーニングに使用され、大規模モデルトレーニングのパフォーマンスを最大6.9倍向上させ、トレーニングシステムへの負荷を大幅に軽減します。現在、ByteDance 傘下のエンタープライズ レベルのテクノロジー サービス プラットフォームである Volcano Engine は、パブリック ベータ版である機械学習プラットフォームで veGiantModel をネイティブにサポートしています。 自然言語処理は、コンピューターが人間の言語を理解、解釈、使用できるようにすることを目的とした人工知能研究の重要な分野です。近年、自然言語処理は、主に BERT、GPT、GPT-3 などの事前トレーニング済み言語モデルの普及により、アプリケーションにおいて大きな進歩を遂げました。事前学習済みの言語モデルは、人工知能の分野ではインフラとなっていると言えます。大規模モデルの方がアルゴリズムのパフォーマンスが優れているため、事前トレーニング済みの言語モデルは近年、大規模モデルへの急速な傾向を示しています。しかし、モデル サイズの急速な増加は、主にメモリの圧力、コンピューティングの圧力、および通信の圧力に反映され、既存のトレーニング システムにかなりの課題をもたらしました。 大規模モデルのトレーニング シナリオにおいて既存のトレーニング システムが直面する上記の課題に対応するため、ByteDance の応用機械学習チームは、大規模モデル トレーニング フレームワーク veGiantModel を提案しました。 veGiantModel の中国語名は Volcano Engine Large Model Training Framework です。これは、オープンソースのディープラーニング フレームワーク PyTorch をベースにした高性能な大規模モデル トレーニング フレームワークであり、2 つの主要なオープンソースの主流トレーニング フレームワークである Megatron と DeepSpeed を基盤として構築されています。 veGiantModel は、データ並列、演算子分割、パイプライン並列の 3 つの分散並列戦略を同時にサポートでき、自動化およびカスタマイズされた並列戦略をサポートします。Byte が開発した高性能非同期通信ライブラリである ByteCCL に基づいて、veGiantModel のトレーニング タスク スループットは、他の主流のオープン ソース フレームワークよりも 1.2 ~ 3.5 倍高く、より使いやすく柔軟なパイプライン サポートを提供し、モデル開発と反復に必要な人員を削減します。さらに、veGiantModel は、数十億から数千億のパラメーターを持つ大規模なモデルを GPU 上で効率的にサポートでき、ネットワーク帯域幅の要件が低く、プライベートに展開する場合に RDMA に大きく依存しません。 MegtraonとDeepSpeedとの比較テストでは、veGiantModelが最も優れたパフォーマンスを発揮し、ネットワーク帯域幅の影響が最も少ないことが示されました。Tesla V100では上記2つよりも1.2~3.5倍、Ampere A100では最大6.9倍のパフォーマンス向上が見られました。 veGiantModel オープンソースアドレス: https://github.com/volcengine/veGiantModel Volcano Engine 機械学習プラットフォーム パブリックベータ アドレス: https://www.volcengine.com/product/ml-platform |
<<: 自動運転トラックはレベル4を達成する可能性が最も高いが、自動運転車は2022年まで待たなければならない
>>: ロボットをもっと速く走らせたい?人工知能で制御しよう
電池なしで自動運転できる「車」が登場した。走行し続けるためのエネルギーを自動的に収集することもできる...
[[390860]]バイナリソートツリーで起こりうる問題シーケンス {1,2,3,4,5,6} が...
この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...
AI はすべての問題を解決できるわけではありませんが、正しく適用すれば短期間で大きな変化をもたらすこ...
滴滴出行が昨年11月にドローンによる食品配達サービスを検討すると発表し、美団も最近ドローン配達隊に加...
[51CTO.com からのオリジナル記事] 運用と保守の発展を振り返ると、スクリプト、ツール、プラ...
企業の人工知能に対する飽くなき需要により、計算集約型の AI アプリケーションを処理するために設計さ...
[[198229]]転移学習転移学習とは、ある問題で訓練したモデルを、簡単な調整で新しい問題に適した...
6月19日のニュース:テクノロジーの進歩に伴い、人工知能(AI)が徐々に出版業界に参入し、特にオーデ...
[[194310]]機械学習のタスクでは、データの不均衡という問題に頻繁に遭遇します。データの不均...
中学校では、数学の描画ほど恐ろしいものはありませんでした。多くの問題にはすぐに利用できる解析的解法が...
Appleの分解ロボットとiPhoneのリサイクルプロセス全体は非常に複雑な取り組みであり、バッテリ...