研究者は人工知能を使ってSARS-CoV-2のような次のウイルスを見つける

研究者は人工知能を使ってSARS-CoV-2のような次のウイルスを見つける

ジョージタウン大学の科学者が率いる国際研究チームは、COVID-19パンデミックの原因ウイルスであるSARS-CoV-2など、将来どのウイルスが人間に感染する可能性があるか、どの動物がそれらの宿主であるか、そしてどこで出現する可能性があるかを予測する人工知能の力を実証した。

1月10日にランセット・マイクロビー誌に発表された、可能性のあるリザーバー宿主の予測モデルの組み合わせ(「人獣共通感染リザーバーのウイルスを優先順位付けするための予測モデルの最適化」と題された)は、SARSウイルスに類似したグループを含むベータコロナウイルスを保有する可能性のある特定のコウモリ種を特定する18か月間のプロジェクト中に検証された。

「これらのウイルスを見つけたいなら、その宿主を解剖することから始めなければならない。その生態、進化、さらには羽の形まで」と、ジョージタウン大学医療センター微生物学・免疫学部の助教授で、同センターのグローバル健康科学・安全保障センターのメンバーでもある、論文の主任著者コリン・カールソン博士は説明した。 「AIにより、コウモリからデータを取得し、それを具体的な予測に変換することができます。次のSARSはどこで発生するでしょうか?」

疾病監視に対する世界的な投資にもかかわらず、いつか人間に感染する可能性のある野生動物ウイルスの保有地を特定し監視することは依然として困難です。統計モデルは、現場でどの野生生物種をサンプリングするかを優先順位付けするためにますます使用されていますが、1 つのモデルによって生成される予測は非常に不確実になる可能性があります。また、科学者は予測を行った後にその予測の成功や失敗を追跡することはほとんどなく、将来的に学習してより良いモデルを作成することが困難になっています。これらの制限を合わせると、どのモデルがタスクに最適であるかについて、かなりの不確実性があることになります。

新たな研究は、世界中で400種以上のコウモリがベータコロナウイルスを宿していると予測されており、SARS-CoV(2002~2004年のSARS流行を引き起こしたウイルス)やSARS-CoV-2(COVID-19を引き起こすウイルス)など呼吸器疾患に関連するウイルスを含む大規模なウイルスファミリーであるため、近縁のウイルスを見つけるのは簡単ではないかもしれないことを示唆している。 SARS-CoV-2の起源は不明のままですが、農業拡大や気候変動などの要因により、一般的なコウモリの宿主から人間集団への他のウイルスの流出が深刻な問題となっています。

ジョージタウン大学生物学部の博士研究員グレッグ・アルベリー氏は、COVID-19が研究を加速させるきっかけになったと語った。 「これは非常にまれな機会だ」とアルベリー氏は説明した。 「パンデミック以外では、これほど短期間でウイルスについてこれほど多くのことを学んだことはありません。10年分の研究に相当するものが約1年分の論文に凝縮されており、これらのツールがいかに強力であるかを実際に示すことができるのです。」

2020年第1四半期に、研究チームは8つの異なる統計モデルを訓練し、どの動物種がベータコロナウイルスを宿す可能性があるかを予測した。その後、研究チームは1年かけて、ベータコロナウイルスの新たなコウモリ宿主40種を発見し、当初の予測を検証し、モデルを動的に更新した。研究者たちは、コウモリの生態と進化に関するデータを使用したモデルが、新たな宿主の予測に非常に優れた性能を発揮することを発見した。対照的に、高度な数学(ただし生物学的データは少ない)を使用するネットワーク科学の最先端モデルは、ランダムな状況では予想とほぼ同じかそれよりも悪いパフォーマンスを示します。

「私たちの研究がもたらした最も重要な成果の一つは、どのコウモリ種をさらに研究すべきかというデータに基づく候補リストだ」とオクラホマ大学生物学助教授ダニエル・ベッカー博士は語った。「これらの宿主候補を特定した後の次のステップは、ベータコロナウイルスがいつどこで蔓延する可能性があるかを把握するための監視に投資することだ」

カールソン氏は、研究チームは現在、世界中の他の科学者と協力して、予測に基づいてコウモリのサンプルにコロナウイルスが含まれているかどうか検査していると述べた。

「これらのウイルスの探索に費やすお金、資源、時間が減れば、それらの資源すべてを実際に人命を救うための次のステップに投入できる。これらのウイルスに対する万能ワクチンの開発や、コウモリの近くに住む人々へのウイルスの流出を監視することに投資できる。これは科学と公衆衛生の双方にとってメリットがある。」

<<:  2022年のAI時代、将来のトレンドに関する洞察

>>:  コード不要で再利用可能な AI が AI の溝を埋める方法

ブログ    
ブログ    
ブログ    

推薦する

ChatGPTのAndroid版は来週リリースされます! OpenAIがAI帝国のパズルの最後のピースを完成させる

OpenAIが発表した最新ニュースによると、ChatGPTのAndroid版は来週Google Pl...

34B パラメータが GPT-4 を上回ります! 「数学的普遍モデル」MAmmoTH オープンソース: 平均精度が最大 29% 向上

数学的推論は言語モデルが避けることのできない問題点です。さまざまなブラックテクノロジーのサポートがあ...

グーグルは、人工知能の進歩により飛行機による地球温暖化への影響を大幅に軽減できると主張

グーグルは8月14日、飛行機による気候への影響を大幅に軽減できる人工知能の分野で大きな進歩を遂げたと...

MIT は Google と提携して 7 台のマルチタスク ロボットをトレーニングし、9,600 のタスクで 89% の成功率を達成しました。

タスクの数が増えるにつれて、現在の計算方法を使用して汎用の日常的なロボットを構築するコストは法外なも...

建物内の生体認証システム

新しい建物では、利用可能なリソースの最適化を最大限にしながら、セキュリティと有用かつ重要なデータを豊...

AIに「子犬」を認識させますか? Facebookは変化を感知できるAIを構築

[[388981]]今まで見たことのない犬種や色であっても、私たちは一目見てその犬を認識することがで...

2023年ゴードン・ベル賞発表:最先端のスーパーコンピューターによる「量子レベルの精度」の材料シミュレーションが受賞

ACM ゴードン・ベル賞は 1987 年に設立され、計算機協会によって授与されます。スーパーコンピュ...

生成AIにおける新たな高収入の仕事

クラウドプロバイダーのサービスの需要は2024年まで増加すると予測しています。また、 AI生成技術と...

デザイナーがAIについて語る:「デザインは最終的に完全に消滅するだろう」

デザイン界では有名なブランド、フィリップ・スタルク。国際宇宙ステーションの居住モジュールからスティー...

Windows 11 AI「パーソナルアシスタント」、Microsoft Windows Copilot が近日登場

6月26日のニュースによると、今年5月、マイクロソフトは毎年恒例のBuild開発者会議で、Windo...

李蘭娟氏との対話:人工知能は流行病を「すべて捕捉」し、医療をより正確にする

[[353851]] 「新型コロナウイルス感染症の突然の発生は、厳しい課題、不確実性、状況の進展の複...

自動化されたAIで予期せぬ収益機会を発見

急速に変化する今日の市場で競争力を維持するために、企業は次の大きな成長機会や運用上の優位性を発見する...

浙江大学の「ホッキョクグマセーター」がサイエンス誌に掲載、ダウンジャケットの5倍の断熱効果

最近は寒波が次々と襲来し、ダウンジャケットは冬を過ごすための必需品となっています。浙江大学は、暖かい...

...