このトリックにより、トランスフォーマーの推論速度が4.5倍になり、数十万ドルを節約できます。

このトリックにより、トランスフォーマーの推論速度が4.5倍になり、数十万ドルを節約できます。

[[443226]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

最近、NLP のスター企業であるHugging Faceが Infinity という製品をリリースしました。これは、 1 ミリ秒の遅延で Transformer 推論を完了できる非常に高いパフォーマンスを備えています。

しかし、その素晴らしいパフォーマンスにもかかわらず、少なくとも年間数十万元(20,000米ドル)と、まだ少し高価です。

それで、何か別の方法はあるのでしょうか?

いくつかの!これはオープンソースであり、Infinity のいくつかの公開ベンチマークを「努力なしで」達成できます。

そして今、この方法にちょっとしたトリックを適用することで、Transformer 推論を4.5 倍高速化することができます。

△ この投稿は1日も経たないうちに250回以上のアクセスがありました。

では、なぜ「代用品」が「支払い」の効果を達成できるのでしょうか?

Transformerの推論を4.5倍高速化するトリック

まず、このメソッドTransformer-deployについて知っておきましょう。

1 行のコマンドで Hugging Face 上の Transformer モデルを最適化してデプロイでき、Bert、Roberta、miniLM、Camembert、Albert、XLM-R、Distilbert など、ほとんどの Transformer エンコーダー ベースのモデルをサポートします。

Transformer デプロイ推論サーバーは Nvidia Triton を使用します。

推論エンジンは、Microsoft ONNX Runtime (CPU および GPU 推論用) と Nvidia TensorRT (GPU のみ) です。

GPU で最高のパフォーマンスを得たい場合、Nvidia Triton + Nvidia TensorRT のような組み合わせが間違いなく最良の選択です。

TensorRT は少し使いにくいですが、実際には Pytorch を使用するよりも 5 ~ 10 倍高速になります。

実際のパフォーマンステストでは、バッチサイズが 1、トークンが 16 および 128 の入力シーケンスでの Transformer-deploy の推論速度は、有料の Hugging Face Infinity よりも高速です。

Transformer-deploy は、トークンが 16 の場合は1.52 ミリ秒、Infinity の場合は 1.7 ミリ秒かかります。トークンが 128 の場合は1.99 ミリ秒、Infinity の場合は 2.5 ミリ秒かかります。

では、Transformer の推論パフォーマンスをさらに向上させることができる、前述のトリックとは何でしょうか?

GPU 量子化

著者は次のように述べています。

私の知る限り、このアプローチはまだどの OOS クラウド サービスでも使用されていません。

ただし、GPU 量子化を実行するには、モデルのソース コードを変更する (行列乗算などのコストのかかる操作に QDQ と呼ばれる特定のノードを追加する) 必要があり、これはエラーが発生しやすく退屈な作業であり、変更したコードを自分で保守する必要もあります。

そのため、著者は複数の Transformer ベースのモデルに対してこれを手動で実行しました。

その後、モデル モジュールの抽象構文木(AST) にパッチを当てるだけで、これを自動的に実行できるようであることがわかりました。

ユーザー側では、モデルの基本的な量子化は次のように GPU 上で実行されます。

最終的に、この方法は、Roberta ベース モデルと MNLI データセット (分類タスク) で4.53 倍の推論速度を達成しました。

もちろん、これによって精度も 0.4 ポイント犠牲になりますが、犠牲にならなければ速度は約 3.2 倍に加速できます。

著者は、これは加速コストに 1 ポイント以上の精度が必要だった Transformer-deploy のオリジナル バージョンに比べて大きな改善であると述べています。

最後に、彼らは Albert、Bert (miniLM を含む)、Distilbert、Roberta (Camembert、XLM-R、DistilRoberta などを含む)、および Electra でこのトリックをテストしました。

その結果、ONNX 形式にエクスポートできるあらゆる Transformer モデルに「すぐに」使用できるようになります。

<<:  フレームワークがシャム自己教師学習を統合、清華大学とセンスタイムが効果的な勾配形式を提案

>>:  120キロの夜間走行中、車内には誰もいなかった!ツーソンは、世界中の公道でテストされる最初の完全無人大型トラックです。

ブログ    
ブログ    
ブログ    

推薦する

制御核融合における新たなマイルストーン! AIがプラズマの裂け目を予測することに成功し、ネイチャー誌に掲載され、クリーンエネルギーの「聖杯」に一歩近づいた。

制御された核融合に新たな進歩がありました!核融合は長い間、プラズマ不安定性の問題という「幽霊」に悩ま...

2021年には、人工知能が私たちの生活にさらに統合されるでしょう。これは何を意味するのでしょうか?

人工知能の歴史は、アラン・チューリングがチューリングテストを発明した 1950 年代にまで遡ります。...

...

ビル・ゲイツ:ロボットへの課税は人間の雇用創出のために推進される

[[248841]]マイクロソフトの創業者で、現在は自身の財団を通じて慈善事業にも取り組んでいるビル...

...

インテリジェント運転ビッグデータの最先端の研究の進歩と典型的な応用

1. はじめにインテリジェント運転とは、一般的には、自動運転や車両のインターネット(IoV)などの技...

...

AIチップのスタートアップ企業CambrianがシリーズB資金調達で数億ドルの完了を発表

本日、AIチップのスタートアップ企業Cambrianが数億ドルのBラウンド資金調達を完了した。資金調...

...

YOLOはまだ死んでいません! YOLOv9がリリースされました:パフォーマンスと速度SOTA〜

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

...

Hongmengユニバーサルカードメモリフリップゲームの開発の詳細な説明

1. はじめにワイルド カード フリップ ゲームでは、合計 8 つのまったく異なる画像を持つ 16 ...

中国のAIチップ「覚醒」の5年

10 種類以上のチップが発売され、多くの合併や買収が行われています。これは、過去 500 日間の中国...