AI プロジェクトの 85% が失敗します。何が悪かったのでしょうか?

AI プロジェクトの 85% が失敗します。何が悪かったのでしょうか?

[[441161]]

最近のガートナー社の 2 つのレポートによると、AI および機械学習プロジェクトの 85% は成果を上げることができず、プロトタイプから実稼働まで到達するプロジェクトはわずか 53% です。しかし、同レポートでは、AIへの投資が減速する兆候はほとんど見られず、多くの企業が投資を増やす予定であると示唆している。

常識的なビジネス思考があれば、多くの失敗は避けられるでしょう。しかし、投資を促す強力な要因としては、FOMO(取り残される恐怖)、莫大なマーケティング予算を持つ AI 企業間の誇張されたベンチャー キャピタル バブル、そしてある程度、AI 主導の意思決定を活用し、データ主導の企業へと移行するには投資が必要であるという認識などがあります。

AI や機械学習プロジェクトを、たとえばデータベースのアップグレードや新しい CRM システムの導入のような 1 回限りの成果として捉えるのではなく、 AI は、高価な機械への投資が正当かどうかを判断する製造業者のやり方に似た、昔ながらの資本投資として考えた方がよいでしょう。

多くの企業が AI や機械学習を捉えているのとは異なり、メーカーは機械を新しい派手なおもちゃとして捉えることはありません。すべての購入決定では、新製品または改良製品のフットプリント、スペアパーツ、メンテナンス、従業員のトレーニング、製品設計、マーケティングおよび流通チャネルが考慮されます。企業が新しい AI または機械学習システムを導入する場合も、同様の考慮事項が適用されます。

ここでは、企業が AI と機械学習に投資する際によくある 6 つの間違いを紹介します。

本末転倒

どのような質問に答えるのかを知らずに計画を分析すると、失望することになります。特に、気が散る要素が多すぎると、重要な問題から注意が逸れてしまいがちです。自動運転車、顔認識、ドローンなどは、すべて現代の驚異です。人々がこれらの新しい斬新なことに挑戦したいと思うのは当然ですが、より良い意思決定を行えるように AI と機械学習がもたらす中核的なビジネス価値を無視しないでください。

データを活用して意思決定を行うことは新しいことではありません。 R.A. フィッシャーは、おそらく世界初の「データ サイエンティスト」であり、1926 年の論文「フィールド実験の準備」(PDF) の 10 ページの短いエッセイで、データに基づく意思決定の基本を概説しています。オペレーションズ・リサーチ、シックス・シグマ、エドワーズ・デミングなどの統計学者の研究は、統計計算の限界を変数を定量化する手段として利用する手法を参照してデータを分析することの重要性を示しています。

つまり、AI と機械学習は、最初から新しいビジネスチャンスとしてではなく、既存のビジネスプロセスを改善する手段として捉えるべきなのです。まず、プロセス内の意思決定ポイントを分析し、「この意思決定を x パーセント改善できたら、結果にどのような影響があるだろうか」と自問します。

組織の変化を無視する

変更管理の実装の難しさは、AI プロジェクト全体の失敗の大きな原因です。多くの調査により、変革プロジェクトのほとんどが失敗することがわかっています。テクノロジー、モデル、データは、その理由の一部にすぎません。従業員のデータファーストの考え方も同様に重要です。実際、従業員の考え方の変化は、AI 自体よりも重要かもしれません。データ主導の考え方を持つ企業は、スプレッドシートを使用して同様に効果的に業務を行うことができます。

AI イニシアチブを成功させるための第一歩は、データに基づく意思決定が直感や伝統よりも優れているという信頼を築くことです。市民データアナリストの取り組みが失敗に終わるのは、事業部門のマネージャーや上級管理職が独自のやり方に固執したり、データに対する信頼がなかったり、データ分析プロセスに意思決定権を委ねることを拒否したりすることがほとんどです。その結果、ビジネス変革よりも、ごく基本的な分析活動やトップダウンの取り組み、好奇心、再構築のアイデアが多く見られるようになりました。

唯一の救いは、企業の変化とそれに伴う問題が広範囲に研究されてきたことだ。企業変革は経営陣の闘志の試練です。上から命令を出して達成できるものではありません。対象を絞った行動を促すには、人それぞれ反応が異なることを認識し、人々が穏やかに、微妙に、そしてゆっくりと思考や態度を変える必要があります。一般的に言えば、コミュニケーション、模範を示すこと、参加、継続的な改善が重要なポイントであり、これらは意思決定管理プロセスに直接関係しています。

データに基づく意思決定は直感に反することが多いため、AI 分野で企業文化を変えることは困難です。データに基づく意思決定が直感や伝統よりも優れているという信頼を築くには、「生理的安全性」と呼ばれる要素が必要であり、これは最も先進的なリーダーシップ チームだけが習得できるものです。何度も言及される頭字語があります。ITAAP は「It's All About People」を意味します。成功するプロジェクトでは通常、予算の 50% 以上が変更管理に費やされますが、私は 60% 近くになるべきだと主張します。プロジェクト固有の人事分析計画を実行するために、最高人事責任者のオフィスにさらに 10% が与えられるためです。

スティーブ・ヌニェス

元のURL:

https://www.infoworld.com/article/3639028/why-ai-investments-fail-to-deliver.html

<<:  ニューラルネットワークはマルウェアを隠すことができる、と研究で判明

>>:  より良い機械学習にはより良いデータ注釈が必要

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

MITの新世代の昆虫型ドローンは、転がったり、ジャンプしたり、群れをなして飛んだりすることができ、人間の衝撃にも耐えられる。

バイオニック鳥類や昆虫はドローン研究の分野で常に重要なテーマであり、スタンフォード大学の学者が作った...

顔認識がコミュニティに登場: 「顔スキャン」の背後にあるプライバシーとセキュリティの問題

李静さん(仮名)は、団地内の自分のアパートのドアを開けることができなくなった。ドアには「顔認識」装置...

...

「大学受験5年間・シミュレーション3年間」の大型模型版が登場! 6141 の数学の問題、マルチモーダルの問題

「大学入試5年間・シミュレーション3年間」の数学の問題集が大幅パワーアップして登場! Microso...

デジタルセンサーを使用してピンホールカメラを作るにはどうすればいいですか?

ビッグデータダイジェスト制作出典: IEEE近年、ピンホール写真に対する人々の関心は年々高まり、関連...

ビッグデータに圧倒された米国の諜報機関は人工知能に期待をかけている

[[205975]]膨大な量のデータを精査する必要があるため、米国の諜報機関は人工知能に期待をかけて...

このロボットは脳コンピューターインターフェース手術を行い、マスクのニューラリンクは大きな注目を集めている

近年、マスク氏の脳コンピューターインターフェース研究会社ニューラリンクが注目を集めている。 2019...

...

...

工業情報化部:我が国のAIコア産業規模は5000億元に達し、2,500以上のデジタルワークショップとスマートファクトリーが建設されました

2023年中国(太原)人工知能会議が本日、山西省太原で開幕しました。中国工業情報化部科学技術部の任愛...

脳コンピューターインターフェース技術における大きな進歩!麻痺した男性が初めて運動と触覚を取り戻す

[[324403]]図1:2010年に重度の脊髄損傷を負った後、バークハートは運動皮質にマイクロチッ...

自動運転のためのリアルタイム測位技術の詳細説明

1 概要自動運転車 (AV) が安全で効率的な運転を実現するには、リアルタイムで正確かつ堅牢な位置特...

...