AI プロジェクトの 85% が失敗します。何が悪かったのでしょうか?

AI プロジェクトの 85% が失敗します。何が悪かったのでしょうか?

[[441161]]

最近のガートナー社の 2 つのレポートによると、AI および機械学習プロジェクトの 85% は成果を上げることができず、プロトタイプから実稼働まで到達するプロジェクトはわずか 53% です。しかし、同レポートでは、AIへの投資が減速する兆候はほとんど見られず、多くの企業が投資を増やす予定であると示唆している。

常識的なビジネス思考があれば、多くの失敗は避けられるでしょう。しかし、投資を促す強力な要因としては、FOMO(取り残される恐怖)、莫大なマーケティング予算を持つ AI 企業間の誇張されたベンチャー キャピタル バブル、そしてある程度、AI 主導の意思決定を活用し、データ主導の企業へと移行するには投資が必要であるという認識などがあります。

AI や機械学習プロジェクトを、たとえばデータベースのアップグレードや新しい CRM システムの導入のような 1 回限りの成果として捉えるのではなく、 AI は、高価な機械への投資が正当かどうかを判断する製造業者のやり方に似た、昔ながらの資本投資として考えた方がよいでしょう。

多くの企業が AI や機械学習を捉えているのとは異なり、メーカーは機械を新しい派手なおもちゃとして捉えることはありません。すべての購入決定では、新製品または改良製品のフットプリント、スペアパーツ、メンテナンス、従業員のトレーニング、製品設計、マーケティングおよび流通チャネルが考慮されます。企業が新しい AI または機械学習システムを導入する場合も、同様の考慮事項が適用されます。

ここでは、企業が AI と機械学習に投資する際によくある 6 つの間違いを紹介します。

本末転倒

どのような質問に答えるのかを知らずに計画を分析すると、失望することになります。特に、気が散る要素が多すぎると、重要な問題から注意が逸れてしまいがちです。自動運転車、顔認識、ドローンなどは、すべて現代の驚異です。人々がこれらの新しい斬新なことに挑戦したいと思うのは当然ですが、より良い意思決定を行えるように AI と機械学習がもたらす中核的なビジネス価値を無視しないでください。

データを活用して意思決定を行うことは新しいことではありません。 R.A. フィッシャーは、おそらく世界初の「データ サイエンティスト」であり、1926 年の論文「フィールド実験の準備」(PDF) の 10 ページの短いエッセイで、データに基づく意思決定の基本を概説しています。オペレーションズ・リサーチ、シックス・シグマ、エドワーズ・デミングなどの統計学者の研究は、統計計算の限界を変数を定量化する手段として利用する手法を参照してデータを分析することの重要性を示しています。

つまり、AI と機械学習は、最初から新しいビジネスチャンスとしてではなく、既存のビジネスプロセスを改善する手段として捉えるべきなのです。まず、プロセス内の意思決定ポイントを分析し、「この意思決定を x パーセント改善できたら、結果にどのような影響があるだろうか」と自問します。

組織の変化を無視する

変更管理の実装の難しさは、AI プロジェクト全体の失敗の大きな原因です。多くの調査により、変革プロジェクトのほとんどが失敗することがわかっています。テクノロジー、モデル、データは、その理由の一部にすぎません。従業員のデータファーストの考え方も同様に重要です。実際、従業員の考え方の変化は、AI 自体よりも重要かもしれません。データ主導の考え方を持つ企業は、スプレッドシートを使用して同様に効果的に業務を行うことができます。

AI イニシアチブを成功させるための第一歩は、データに基づく意思決定が直感や伝統よりも優れているという信頼を築くことです。市民データアナリストの取り組みが失敗に終わるのは、事業部門のマネージャーや上級管理職が独自のやり方に固執したり、データに対する信頼がなかったり、データ分析プロセスに意思決定権を委ねることを拒否したりすることがほとんどです。その結果、ビジネス変革よりも、ごく基本的な分析活動やトップダウンの取り組み、好奇心、再構築のアイデアが多く見られるようになりました。

唯一の救いは、企業の変化とそれに伴う問題が広範囲に研究されてきたことだ。企業変革は経営陣の闘志の試練です。上から命令を出して達成できるものではありません。対象を絞った行動を促すには、人それぞれ反応が異なることを認識し、人々が穏やかに、微妙に、そしてゆっくりと思考や態度を変える必要があります。一般的に言えば、コミュニケーション、模範を示すこと、参加、継続的な改善が重要なポイントであり、これらは意思決定管理プロセスに直接関係しています。

データに基づく意思決定は直感に反することが多いため、AI 分野で企業文化を変えることは困難です。データに基づく意思決定が直感や伝統よりも優れているという信頼を築くには、「生理的安全性」と呼ばれる要素が必要であり、これは最も先進的なリーダーシップ チームだけが習得できるものです。何度も言及される頭字語があります。ITAAP は「It's All About People」を意味します。成功するプロジェクトでは通常、予算の 50% 以上が変更管理に費やされますが、私は 60% 近くになるべきだと主張します。プロジェクト固有の人事分析計画を実行するために、最高人事責任者のオフィスにさらに 10% が与えられるためです。

スティーブ・ヌニェス

元のURL:

https://www.infoworld.com/article/3639028/why-ai-investments-fail-to-deliver.html

<<:  ニューラルネットワークはマルウェアを隠すことができる、と研究で判明

>>:  より良い機械学習にはより良いデータ注釈が必要

ブログ    
ブログ    

推薦する

IoTとAIはビジネスの生産性を向上させる完璧なパートナーです

今日のハイテクな世界では、何百万ものデバイスが相互作用し、データを交換し、貴重な洞察を重要な行動方針...

Python は AI のために生まれたわけではありません。Golang は今後 10 年間の人工知能を支配することになるでしょうか?

ここ数年、Python は人工知能とデータサイエンスの分野で最も人気のあるプログラミング言語になりま...

AI バイブル PRML「パターン認識と機械学習」が Microsoft によって正式にオープンソース化されました。

機械学習やディープラーニングに携わっている人なら誰でも、「パターン認識と機械学習」、略して PRML...

...

AIロボットが大規模に導入されると、私たちはより良くなるのでしょうか?

人工知能の波が大きな変化を引き起こすには、4年という時間は十分あります。 2016年に北京の大学の講...

GPT時代の学習アルゴリズム、線形モデルを実装するPytorchフレームワーク

今日は線形回帰モデルの実装を続けます。ただし、今回はすべての関数を自分で実装するのではなく、Pyto...

...

フィードフォワードネットワーク + 線形相互作用層 = 残差 MLP、Facebook の純粋な MLP 画像分類アーキテクチャが市場に参入

[[398872]]最近では、多層パーセプトロン (MLP) が CV 分野の重要な研究テーマとなっ...

中国における医療用人工知能の現状分析:製品検証から市場検証まで

2016年以降、人工知能と医療の融合があらゆる面で火花を散らし始めています。医療AIは数年にわたる開...

人工知能はマーケティング業界に破壊的な影響を及ぼすだろう

ビッグデータと人工知能の市場は現在、活況を呈しています。調査会社の最近の予測によると、これら2つの技...

...

[ディープラーニングシリーズ] PaddlePaddle と Tensorflow を使用したクラシック CNN ネットワーク Vgg の実装

先週は、古典的な CNN ネットワーク AlexNet が画像分類に与える影響についてお話ししました...

Midjourney はテキストを生成できます。 V6バージョンの5つの主要なアップグレードがネットユーザーを驚かせる

Midjourney がメジャーアップデートされ、バージョン V6 がリリースされました!アップデー...

...

...