AI および機械学習モデルの作成に必要なスキルセットをより深く理解するには、機械学習ソフトウェアによって段階的に実行されるモデル作成プロセスと、事前に定義された成功基準を満たすモデルを作成する際の課題を理解する必要があります。 機械学習ソフトウェアはデータを使用してモデルをトレーニングします。このモデルは AI 製品を構成し、AI 入力データを定期的に更新することで時間の経過とともに再利用できます。機械学習ソフトウェアには、次の 4 つの基本的な学習タイプがあります。
特定のデータ セットに適合する機械学習ソフトウェアで使用する最適な統計アルゴリズムを決定するには、データ サイエンスの専門知識が必要です。 数多くの統計アルゴリズムの中でも、特に人気のあるものは次のとおりです。感情分析、スパム検出、推奨のためのナイーブ ベイズ、結果予測のための決定木、複数の決定木をマージして予測を改善できるランダム フォレスト、バイナリ分類 (A または B) のためのロジスティック回帰、市場セグメンテーションなどのデータを再編成するための AdaBoost、ガウス混合、Recommender、K-Means クラスタリング。 AIと機械学習モデルのトレーニング機械学習には、トレーニング、検証、テストという 3 つの異なる学習 (トレーニングとも呼ばれる) フェーズがあります。始める前に、データが適切に整理され、正しいことを確認する必要があります。概念は単純ですが、データを順序に変換するのは時間がかかり、細かい作業が必要なプロセスであり、手作業が必要になる場合があります。 目標は、重複、タイプミス、切断のないデータを作成することです。クリーニング後、データは 3 つのトレーニング フェーズごとに 3 つのグループにランダムに分割されました。ランダムなデータ分割の目的は、データ選択の偏りを防ぐことです。 モデル作成に関連する定義をいくつか示します。
トレーニングを開始する前に (フェーズ 1)、機械学習ソフトウェアがデータから重要な手がかりを継続的に取得して学習できるように、データにラベルを付けることが重要です。教師なし学習ではラベル付けは必要ありません。機械学習ソフトウェアのデフォルトのパラメータ値を使用して起動することも、パラメータを個別に変更することもできます。 精度テストモデルトレーニング フェーズが成功基準を満たすと、検証フェーズに入ります。最初のパスでは新しいデータセットが使用されます。結果が良ければ、最終テスト段階に進みます。 期待した結果が得られない場合は、機械学習ソフトウェアが新しいパターンを示さなくなるまで、またはパスの最大数に達するまで、機械学習ソフトウェアを使用してデータに追加のパスを実行できます。トレーニングが進むにつれて、これらのパラメータは機械学習ソフトウェアまたはそれを管理する人々によって自動的に変更されます。 テスト段階は、新しいデータセットに対する「最終試験」ですが、今回は「補助」データラベル(教師あり学習にのみ使用)がありません。ソフトウェアが標準テストに合格した場合、それは実用的なモデルとなります。そうでない場合は、トレーニングを続けてください。これまでと同様に、テスト チームは手動でパラメータを変更することも、トレーニング プロセス中に機械学習ソフトウェアにパラメータを自動的に変更させることもできます。 AI における機械学習とは、機械学習ソフトウェアに公開されたデータを繰り返し再生することです。パラメータは機械学習ソフトウェアによって自動的かつ反復的に変更され (手動で変更される場合もあります)、各テストの後にモデルがよりスマートになります。機械学習ソフトウェアは、新しいパターンが検出されなくなったと判断するまで、またはパスの最大数に達して停止するまで、データに対して複数回のパスを実行し続けます。 AIモデルの継続的なメンテナンス警戒(監視)はAIの自由を享受するための代償です。 AI モデルのパフォーマンスを判断する一般的なアプローチは、実際のパフォーマンスが AI の予測とどの程度一致しているかを監視することです。 AI 予測のパフォーマンスが悪かった場合は、機械学習モデルのトレーニング プロセスに再度入り、最新のデータを使用してモデルを修正する必要があります。 入力データは時間の経過とともに簡単に変化する可能性があることを覚えておくことが重要です。これは、トランザクションにおけるデータ ドリフトとして知られています。データドリフトにより AI モデルの精度が失われる可能性があるため、データドリフトを早期に警告することが、問題に先手を打つために重要です。 Fiddler、Neptune、Azure ML など、データドリフトを追跡して外れ値を見つけることができる AI ツールは早期警告を提供できるため、機械学習を更新してデータの問題を早期に解決できます。 |
>>: 高齢者介護の問題がますます顕著になり、人工知能が大きな注目を集めている
[[410767]] GitHub Copilot、DeepDev、IntelliCode、その他の...
最近、小鵬汽車とDesay SVは戦略的協力協定を締結し、レベル3自動運転システムの開発で協力すると...
百度は9月19日、国内初の「産業レベル」医療ビッグモデル「霊益ビッグモデル」を発表し、霊益ビッグモデ...
AI は急速に日常のビジネス運営に不可欠な要素になりつつあり、すでに運用プロセスの改善、顧客サービス...
[[400670]]人工知能と機械学習が今日のテクノロジー業界のあらゆる部分に影響を与えていることは...
[[283218]] [51CTO.com クイック翻訳] 実際、人工知能技術は私たちの生活を日々...
IoT にインテリジェンスが必要なのはなぜですか?人工知能は登場しましたが、具体的な概念はなく、ま...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
最近、北京同仁病院の警報システムが作動し、職員は北京天壇病院で活動していたチケット転売業者が北京同仁...
人工知能は世界を変えており、グラフィックス コンピューティングも例外ではありません。 5 年前、NV...
英国の著名な分析機関オックスフォード・エコノミクスが発表したデータによると、今から10年後の2030...
ディープラーニングは機械学習手法の一種であり、人工知能を実現するための重要な基盤です。最近、一部の学...
私はほぼ 10 年間コードを書いてきましたが、挿入ソートや赤黒木を書いたことはなく、再帰を使用したこ...