ほとんどの人にとって、あるオブジェクトを別のオブジェクトの上に重ねることは簡単な作業です。しかし、最も洗練されたロボットでさえ、一度に複数のタスクを処理するのは困難です。これは、積み重ねには、さまざまな種類の物体と対話する能力を含む、さまざまな範囲の運動能力、知覚能力、分析能力が必要になるためです。この作業の複雑さにより、ロボット工学の分野では大きな課題となっています。 DeepMind の研究者チームは、ロボットによるスタッキングの最先端技術を進歩させるには新たなベンチマークが必要であると判断しました。 2021年のロボット学習会議(CoRL 2021)で発表される論文では、ロボットがさまざまな物体をつかみ、それらを互いにバランスよく重ねる方法を学習できるRGBスタッキングが紹介されています。スタッキングタスクのベンチマークはすでに文献に存在しますが、研究者らは、この研究がユニークなのは、使用された被験者の多様性と、「発見」を検証するために行われた評価であると主張しています。研究者らは論文の中で、シミュレーションデータと実際のデータの組み合わせが「複数オブジェクトの操作」の学習に使用できることを示していると述べている。 「他の研究者をサポートするために、シミュレーション環境のバージョンをオープンソース化し、リアルなロボット RGB スタッキング環境を構築するための設計を、RGB オブジェクト モデルと 3D プリント用の情報とともに公開しています」と研究者らは述べています。「ロボット研究のためのライブラリとツールも、より広範囲にオープンソース化しています。」 DeepMind の研究者によると、学習プロセスにより、ロボットは複数のオブジェクト セットでトレーニングすることで一般的なスキルを習得できるようになります。 RGB スタッキングは、ロボットが各オブジェクトをつかんで積み重ねる方法を定義する、つかみ特性と積み重ね特性を意図的に変更し、ロボットに単純なピックアンドプレース戦略を超えた動作を強制します。 ロボットがアイテムの積み重ねや掴みに熟練するようになるにつれ、一部の専門家はこの種の自動化が製造業の新たな成長の波を引き起こす可能性があると考えている。 |
<<: すべてを支配する 1 つのアルゴリズム! DeepMind はニューラル アルゴリズム推論を提案しています。ディープラーニングと従来のアルゴリズムの融合により、再び奇跡が起こるでしょうか?
6月26日のニュースによると、今年5月、マイクロソフトは毎年恒例のBuild開発者会議で、Windo...
[[326611]] 「新型コロナウイルスにさらされると、マスクが自動的に点灯し、検査員に警告を発し...
大規模モデルの時代では、視覚言語モデル (VLM) のパラメータは数百億、さらには数千億にまで拡大し...
これらの施設は重要であるにもかかわらず、あまり理解されていません。しかし、最近ではデータセンターに注...
人工知能といえば、多くの人が「未来の技術」という遠近感、移動機能を備えた空中の高層ビル、いつでも世界...
私たちの周りのあらゆるものがどうしてこんなにスマートになったのか、不思議に思ったことはありませんか?...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
[[255723]]機械学習プラットフォームは未来の波ではなく、今起こっていることです。開発者は、自...
攻撃対象領域が拡大し続け、攻撃手法がより高度化するにつれ、セキュリティ業界は現在、深刻な「セキュリテ...
この流行は世界市場に衝撃をもたらしたが、人工知能(AI)企業への資本投資は増加し続けている。 CB ...
[[390275]]今日は、ディープラーニングを使用して顔認証アルゴリズムを作成します。 私たちのタ...
機械学習アルゴリズムは、より広範で信頼性の高いデータをリアルタイムで提供することができ、インテリジェ...