ディープラーニング:新興技術の限界を押し広げる

ディープラーニング:新興技術の限界を押し広げる

ビッグデータや人工知能などの新興技術は猛烈な勢いで発展しており、その一因はディープラーニングの驚異的な進歩にあります。

ディープラーニングは、人工ニューラル ネットワークを通じて人間のような学習とロジックを模倣しようとする、より大きな人工機械学習ファミリーの一部です。ディープラーニングの利点は、膨大なデータセットを調査し、人間には不可能な膨大なデータセットに基づいて複雑な意思決定を行えることです。

ディープラーニング モデルは、複雑な意思決定を反復的に実行できる複雑な概念を学習します。これらのシステムは新しいデータをベースライン データと比較し、効果的に学習できるようにします。これらのシステムの精度を向上させるには、より多くのデータを入力することで、より洗練された意思決定基準を確立する必要があります。

当然のことながら、このテクノロジーは、商業的に実行可能になれば、あらゆるビジネス サイロを破壊する可能性があります。現時点では、Market Research Future (MRFR) の最近のレポートによると、ディープラーニング市場は 2023 年までに 174 億ドルの価値に達すると予想されています。ディープラーニングを機械学習、ビッグデータ、サイバーセキュリティなどの分野と組み合わせて応用することで、今日の現代のビジネス環境が再構築されるでしょう。

ビッグデータから AI まで、進化するテクノロジーのほぼすべての分野がディープラーニングの大きな価値の恩恵を受けています。次のセクションでは、人工知能 (AI) と機械学習 (ML) のこの分野が新興テクノロジーの開発にどのように貢献してきたかを詳しく見ていきます。

ビッグデータがディープラーニングの道を広げる

ディープラーニング モデルは、従来、構造化データと非構造化データに依存して意思決定プロセスを構築します。音声認識とテキスト翻訳では、ビッグデータとこのテクノロジーを組み合わせることで、人間のような特性を持つ、より洗練された音声認識およびテキスト翻訳アプリケーションを構築できます。さらに、コンピューター ビジョン アプリケーションも、ビッグ データとディープラーニングの組み合わせによって進化しました。ここで、コンピューター ビジョン アプリケーションはより人間に近い判断を下すことができ、軍事から医療までさまざまな分野にメリットをもたらします。

最後に、ラベル付け機能とグラフ処理機能が強化され、大量のデータを処理し、ディープラーニング モデルのトレーニングで重要な役割を果たすようになりました。これらの開発は、輸送、医薬品、およびラベル作成やグラフィック デザインに依存するその他の業界に価値をもたらす可能性があります。

ディープラーニングによるサイバーセキュリティの向上

サイバーセキュリティにおける大きな進歩の 1 つは、ディープラーニングを有効にした Deep Instinct の応用です。 Deep Instinct は、ディープラーニングを活用し、サーバー、エンドポイント、携帯電話全体の脅威をリアルタイムで検出するモバイルおよびエンドポイント ネットワーク セキュリティ ソリューションを開発しています。このディープラーニング対応テクノロジーは、ディープラーニングアルゴリズムを通じて攻撃を防ぎ、未知の攻撃を予測することができます。有害な攻撃と無害な攻撃を区別し、ネットワーク全体に保護を瞬時に拡張できます。教育、金融サービス、医療の各分野でランサムウェアを識別できるため、高い採用率を誇っています。

人工知能分析

人工機械学習の別の分野である人工知能 (AI) は、人間の知性、合理性、個性を模倣する自己認識技術システムの設計を追求する分野です。人工知能は、基本的なチャットボットから洗練されたフルタイムのアシスタントロボットへと進化しました。今日では、最先端の AI システムは、ラベルのおかげで言語を素早く翻訳し、Web 画像を認識できます。この驚異的な成長に伴い、企業組織は現在、最も困難な課題のいくつかを解決するために AI を活用しています。

ディープラーニングは、自律型 AI マシンの学習コンポーネントとして考えることができます。研究者たちは、ディープラーニングのバックエンド学習機能を AI システムに導入することで、がんの治療、安全な自動運転ネットワークの開発、医療のあらゆる側面の進歩など、社会が抱える最大の課題のいくつかを解決できる高度な AI システムを開発したいと考えています。

エッジコンピューティング

ディープラーニング モデルはエッジ コンピューティングでも役割を果たします。研究者たちは、これらのシステムが機械がさまざまな製品を識別し、産業の自動化を促進するのに役立つ可能性があることを発見した。これらのシステムは、表面の欠陥を解決し、明るさや形状で製品を識別し、人間の介入なしに現場で複雑な検査を実行できます。そうすることで、ディープラーニングを活用したエッジコンピューティングは、人間の介入を最小限に抑えながら、より回復力の高いコンピューティングシステムを効果的に構築できます。

コンピューティングおよびネットワーク機器の使用により、データの配布と保存の負担がエッジ コンピューティングに移行しました。スマート ファクトリー、生体認証、クラウドへの移行の台頭により、エッジ コンピューティングにおけるディープラーニング モデルに大きなチャンスが生まれています。エッジ コンピューティングのこれらのシステムは、さまざまなシミュレーションを通じて IoT 対応デバイスをトレーニングし、人工知能と連携してエッジでインテリジェンスを収集する方法をある程度自動化します。このプロセスでは、ネットワークを仮想化するか、仮想マシンとコンテナを組み合わせてリソース割り当てを最大化し、サービスを分離してコンピューティングを高速化する必要があります。エッジコンピューティングの速度を上げるためには、プライバシー、リスク管理、応答遅延などの問題に対処する必要があります。

今後の展開

この魅力的なテクノロジーの開発は遅いですが、テクノロジーが進歩するにつれて、新興テクノロジーに信じられないほどの価値を提供し続けることは間違いありません。 AI、サイバーセキュリティ、ビッグデータなど、ディープラーニングが新興技術の開発を推進し続けるにつれて、さらに驚くべき進歩が見られるようになるでしょう。

<<:  調査レポート:2021年の人工知能開発動向予測

>>:  物流業界におけるインテリジェント化のトレンドは、倉庫ロボットの将来性を浮き彫りにしています。

ブログ    
ブログ    

推薦する

...

スマート製造技術:効率的な生産の未来?

2020年の初め以来、工業および製造業はCOVID-19パンデミックの影響を受けています。工場は、...

Nvidiaが自動運転AIアルゴリズムをオープンソース化、チップ性能をXavierの7倍にアップグレード

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

スタンフォードNLPコースXCS224Uのビデオが公開されました。実用的な情報が満載です。ぜひ聞いてください。

会話エージェントから検索クエリまで、自然言語理解 (NLP) は今日の最もエキサイティングなテクノロ...

...

ヒントエンジニアリング: LLM で必要なものを生成

翻訳者 |ブガッティレビュー | Chonglou生成AIモデルは、入力に基づいてコンテンツを生成す...

IoT、エッジコンピューティング、AIプロジェクトが企業にもたらす利益

[[385209]]ビル・ホームズは、象徴的なフェンダー・ストラトキャスターとテレキャスターのギター...

自動運転のためのニューラルネットワークとディープラーニング

先進運転支援システム (ADAS) は、道路の安全性と旅行体験に対するドライバーと乗客のより高い要求...

スマートテクノロジーが現代のビジネス運営を改善する7つの方法

1. 生産性の向上多くの組織がリモートワークに移行するにつれて、効率性を維持することが重要になります...

科学者は、掴んだまま物体を回転させることができるユニークなロボットハンドを開発

今日の多くのロボットハンドは物体をつかむことができるが、つかんだ物体を放さずにその向きを変えることは...

テンセントが業界初のAIセキュリティ攻撃マトリックスを発表、リスク排除が辞書を引くのと同じくらい簡単に

近年、人工知能は急速に発展し、家庭、金融、交通、医療などさまざまな分野に深く融合し、人々の生活はより...

360はウォータードロップライブを永久に閉鎖し、セキュリティ監視に注力すると発表した。

360は12月20日、Water Dropライブストリーミングプラットフォームを積極的に永久に閉鎖...

アルゴリズムエンジニアとして働くために養豚場に行く?月20,000

[[282855]]皆さんご存知の通り、今年の「ブラザーツー」の値段は大変高く、信じられないほど高...

...