この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式サイトにアクセスして許可を申請してください。 機械学習の専門家のほとんどは、実行時にモデルを評価するために使用されるトレーニング データとサンプルが大きく異なる状況に遭遇したことがあります。そのため、トレーニング データのモデルのみに依存する DNN やランダム フォレストなどの比較的柔軟な機械学習ソリューションは、トレーニング データセットと検証データセットでカバーされていない入力空間では予期しない、あるいは大幅に異なるパフォーマンスを示すことがよくあります。この問題は、重要なポリシーや公平性の制約に違反する可能性がある場合に特に深刻になります。 制約のないモデルは、少数のトレーニング例のみでカバーされる入力空間では予期しない動作をする可能性があります。図に示すように、ディープ ニューラル ネットワークと勾配ブースティング ツリーの予測結果は、テスト セットの実際の結果とは大きく異なります。 正規化は一般的にはより堅牢な推論結果をもたらしますが、標準的な正規化ツールでは、特に入力空間の次元が高い場合、モデルがすべての入力空間で適切に動作することを保証できません。予測可能な動作を持つシンプルで制御可能なモデルに切り替えると、モデルの精度が大幅に低下します。 TF Lattice を使用すると、意味的に意味のある一般的な制約やポリシー主導の形状制約などのいくつかのオプションを通じて、ドメイン知識を学習プロセスに注入しながら、柔軟なモデル (高精度) を使用することが可能になります。たとえば、モデルへの入力が特定の入力に対して単調に増加するように指定できます。この追加のドメイン知識により、モデルはトレーニング データを超えた知識を学習し、モデルの動作をユーザーが予測および制御できるようになります。 TensorFlow Lattice ライブラリTensorFlow Lattice は、制約付きで解釈可能なラスターベースのモデルをトレーニングするためのライブラリです。ラスターは、データ内の任意の入力と出力の関係を近似するために使用できる補間ルックアップ テーブルです。 上記の例は、2 つの入力フィーチャと 4 つのパラメータに基づくグリッド関数です。これらの 4 つのパラメータは、入力空間の 4 つの頂点におけるグリッド関数の関数値であり、その他の関数値は、これらのパラメータを通じて得られる補間値です。より柔軟な機能を得るために、より高次元のグリッドやより細かいグリッド パラメータを使用することもできます。このライブラリは、Keras レイヤー オブジェクト tfl.layers.Lattice を使用して上記のグリッドを実装します。 TensorFlow Grid は、入力機能をグリッド関数の許容入力範囲 (上記のグリッドの例では 0 ~ 1) に揃えて正規化するための区分線形関数 (tfl.layers.PWLCalibration Keras レイヤー) も提供します。 分類された特徴については、TensorFlow Grid は分類タイプのキャリブレーションを提供し、グリッドへの入力を容易にするために同様の出力境界を取得します。上記のキャリブレーターとグリッドを組み合わせると、キャリブレーションされたグリッド モデルが得られます。 TensorFlow Lattice レイヤーは、モデル トレーニング プロセスにドメイン知識を注入するために使用できる多くの種類の制約を提供します。
TensorFlow lattice は、形状制約に加えて、各機能における関数の柔軟性と滑らかさを制御するための一連の正規化子を提供します。これらには、ラプラス正則化 (より平坦な関数)、ヘッセ行列正則化 (より線形なキャリブレーション関数)、しわ正則化 (より滑らかなキャリブレーション関数)、およびワープ正則化 (よりペアワイズ線形なグリッド関数) が含まれます。 事例: 訪問の並べ替えこの例は、エンドツーエンドの関数形状制約チュートリアルからのものであり、上記の制約をすぐに使用できる多くの推定器が含まれています。ユーザーがレストランの検索結果をクリックするかどうかを判断するというシナリオを想定します。これはクリックスルー率 (CTR) 予測タスクです。指定されている機能は次のとおりです。
モデルの動作を制限または無効化するための次のドメイン知識があります。
TensorFlow Lattice が提供する Keras レイヤーを使用して、キャリブレーションされたラスター モデルを作成できます。
上記のグリッドにより、トレーニングされたモデルは指定されたすべての制約を満たすようになり、追加の正規化によりモデルはより滑らかになります。 ツールキットによって提供されるすぐに使用できる推定器を使用して上記のモデルを構築することもできます。詳細については、上記の制約の役割と効果についても説明されている、シェイプ コントロールのエンドツーエンドの Colab チュートリアルをご覧ください。 TF Lattice Keras レイヤーを他の Keras レイヤーと組み合わせて使用することで、部分的に制約されたモデルや正規化されたモデルを作成できます。たとえば、グリッドまたは PWL キャリブレーション レイヤーは、他の埋め込みや Keras レイヤーを参照するディープ ニューラル ネットワークの最後のレイヤーとして使用できます。詳細については、Tensorflow Lattice の Web サイトをご覧ください。形状制約、統合推定器、カスタム推定器、Keras レイヤーなど、始めるのに役立つチュートリアルが多数あります。その間、TF 開発者会議のビデオを見て、詳細を確認してください。 (https://youtu.be/ABBnNjbjv2Q) |
<<: 百度言語知識技術サミットが開催され、王海鋒氏がNLP技術の進化の道筋を明らかにした
人工知能は近年急速に発展し、さまざまな業界の無数のユースケースで強力なイノベーションツールとして広く...
[[443053]] 2021年は人工知能が飛躍的に進歩し続ける年です。最近、Github で誰かが...
ちょうど本日、DeepMind は AlphaFold の最新の進捗状況である「AlphaFold-...
[[421250]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitA...
人工知能は徐々にビジネスプロセスに導入されつつあります。しかし、CIO は立ち止まって、AI ツール...
導入顔認識モデルを構築し、検証セットを使用してテスト セットでの実験のパラメータを調整しているとしま...
分子診断のミッドストリーム市場は、機器メーカーや試薬メーカーによって占められています。現在の分子診断...
米国の人工知能戦略配置と発展パターンは、高度に体系化され、段階が明確であり、世界の人工知能発展の最新...
Googleは8月30日、Gmail、ドライブ、スライド、ドキュメントなどを含むすべてのWorks...