三方からのアプローチ! AIがサイバーセキュリティを強化

三方からのアプローチ! AIがサイバーセキュリティを強化

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discovery)から転載したものです。

人工知能と機械学習の急速な発展は、さまざまな業界の未来を決定づけています。 Marketsand Marketsの調査によると、人工知能産業の総価値は2025年までに190億ドルに達するだろう。 2021 年末までに、ビジネス アプリケーションの 4 分の 3 が人工知能サービスを使用するようになると予測されています。

現在、AI技術は自動化、教育、顧客サービスなどの業界で大きな進歩を遂げています。サイバーセキュリティも AI が力を発揮できる分野のひとつであり、情報犯罪対策において重要な役割を果たします。

この記事では、情報セキュリティの発展を促進するために AI を最適な IT アーキテクチャ ソリューションにする方法を紹介します。

サイバーリスク識別のための機械学習

サイバー犯罪を防ぐための第一歩は、AI および ML 技術の本拠地であるサイバー攻撃を事前に特定することです。脅威が情報システムを攻撃する前にそれを特定するためにデータを分析します。機械学習を通じて、コンピューターは受け取ったデータに基づいてアルゴリズムを適用および調整できます。その結果、コンピューターは人間よりも正確にリスクを識別し、異常を検出できるようになります。

従来の技術は主に履歴データに依存しており、AIのようにアルゴリズムを即座に改善することはできません。 AI のように新しい罠やハッカーのトリックに対処することはできません。さらに重要なのは、AI は増加するサイバー犯罪に人間よりも簡単かつ迅速に対処できることです。

AI認証とパスワード保護

数え切れないほど多くのアカウントに同じパスワードを設定するのは面倒ですか? 実際、パスワードはユーザー アカウントとハッカーの間にある唯一の脆弱な障壁です。

生体認証はパスワードよりも優れた選択肢ですが、利便性は劣ります。たとえば、顔認識システムはユーザーの新しいヘアスタイルを認識しない可能性があります。ハッカーはユーザーのソーシャル アカウントから写真を盗み、システムを欺いてセキュリティ防御を突破することができます。

[[322337]]

画像ソース: unsplash

そのため、開発者は人工知能や拡​​張生体認証を使用して、その欠陥を取り除き、信頼性を高めようとしています。

iPhoneXの顔認識技術はその良い例です。 Face IDと呼ばれるこの技術は、ニューラルエンジンと内蔵の赤外線センサーを使用してユーザーの顔の特徴を処理します。ソフトウェアは、主要なパターンと相関関係を識別することで、ユーザーの顔のモデルを構築します。

Apple は、このテクノロジーにより、ハッカーが AI を騙して他の方法でデバイスのロックを解除することがほぼ不可能になることを保証しました。彼らの情報セキュリティソリューションにより、AI ソフトウェアはさまざまな照明条件でも適切に動作し、帽子、ひげ、新しいヘアスタイルなどの顔の変化によって邪魔されることもありません。

サイバーセキュリティとAI

ネットワーク セキュリティの維持は、組織のネットワーク トポロジの特徴付けと、セキュリティ ルールおよびポリシーの確立という 2 つの部分で構成されます。どちらの作業も時間がかかります。しかし、さまざまな情報セキュリティ アーキテクチャ サービスでは、人工知能を使用してプロセスを高速化しています。

[[322338]]

画像ソース: unsplash

AI は、セキュリティ ポリシーの推測に役立つネットワーク トラフィック パターンを学習および観察することでこれを実現します。これにより、時間の節約になるだけでなく、科学技術の進歩と発展のための大量のリソースを獲得することも可能になります。

とりわけ、AI はバッファ オーバーフローを検出できます。これは、アプリケーションが通常よりも多くのデータをバッファに送り込んでいる場合によく発生します。従業員の不正行為はデータ侵害の主な原因であり、AI はそのようなミスを簡単に検出して防止できます。

[[322339]]

画像ソース: unsplash

さらに、AI でできることは他にもたくさんあります。例えば、異常が検知された場合、AI によって不正アクセスを防止したり、マルウェアを事前にブロックしたりすることができます。ソフトウェア企業やセキュリティ企業は、検出時間の短縮、検出率の向上、マルウェアの拡散の阻止、ユーザーの安全性の向上、システムの保護のために、AI を継続的に調整していきます。

まだ改善の余地は大きいものの、サイバーセキュリティ業界を新たな未来へと導いたことは否定できない。

<<:  人工知能トレーナーの秘密を明かす:新しい職業、AIの教師になるのは簡単ではない

>>:  RL エージェントはオンラインでしかトレーニングできないと誰が言ったのでしょうか? Google がオフライン強化学習の新しいパラダイムを発表

ブログ    

推薦する

ヘルスケア分野で人工知能がどのように台頭しているか

人工知能は世界のほぼすべての分野に変革をもたらしたようです。ヘルスケア業界は長年にわたって大きく変化...

人工知能に特化したAIハッカーが近々登場すると予想

最近、ある問題を発見しました:映画でも現実でも、人工知能AIは人間を圧倒するような形で世間の前に現れ...

システムと機械学習を接続するための MLOps の課題は何ですか?この記事は明らかにしている

[[418732]]機械学習は、人々がデータを利用し、データとやり取りする方法に革命をもたらし、ビジ...

ディープラーニングは壁にぶつかる?ルカンとマーカスの間の争いを引き起こしたのは誰ですか?

今日の主人公は、AI の世界で互いに愛し合い、憎み合う古くからの敵同士です。ヤン・ルカンとゲイリー・...

感情 AI はデジタルヘルスケアの未来となるでしょうか?

進化するヘルスケアとテクノロジーの世界では、「感情 AI」と呼ばれる画期的なイノベーションが変化の兆...

...

AMiner が発表: 2022 年に世界で最も影響力のある人工知能学者「AI 2000」

2022年1月25日、人工知能分野で世界で最も影響力のある学者の2022年リスト「AI 2000」...

...

OpenAI の「地震」の中心人物である Ilya を見てみましょう。彼は AI についてどう考えているのでしょうか?

OpenAIのCEOサム・アルトマン氏は先週金曜日に解雇され、もはや同社を率いていない。投資家たち...

...

...

GPT-4 パラメータに関する最新の情報! 1.76兆個のパラメータ、8220億個のMoEモデル、PyTorchの創設者は確信している

皆さん、GPT-4 のパラメータは 1 兆を超える可能性があります。最近、アメリカの有名なハッカーで...

推奨システムにおけるTensorFlowの分散トレーニング最適化の実践

著者 | Yifan、Jiaheng、Zhengshao などMeituan の高度にカスタマイズさ...

「顔認証」の時代に「顔を守る」には?代表者と議員は顔認識に関する特別立法を実施し、不正なデータ収集を是正することを提案した。

「顔認証」の時代、あなたの「顔」をどう守るか? 2021年の全国「両会」では、顔認識によって生成さ...

パラメータ数は元の1%に過ぎません。Beiyouらは、超解像アルゴリズムを使用した高性能なビデオ伝送方法を提案しました。

[[421986]]過去数年間でインターネットビデオは爆発的な成長を遂げており、ビデオ伝送インフラ...