インタビュアー: 負荷分散アルゴリズムを理解していますか?

インタビュアー: 負荷分散アルゴリズムを理解していますか?

前回の記事では、ポーリング、ランダム、最小接続の 3 つの負荷分散アルゴリズムについて説明しました。ただし、他の負荷分散アルゴリズムも存在するため、それらについても調べる必要があります。また、面接でそれらについて質問される可能性もあります。

[[286766]]

高性能なクラスターを実現するには、適切なロード バランサーを選択することが重要です。また、さまざまなビジネス シナリオに適したロード バランシング アルゴリズムを選択することも非常に重要です。これまでにいくつかのアルゴリズムを挙げてきました。次に、残りのアルゴリズムについて説明しましょう。

1. 送信元アドレスハッシュアルゴリズム

これは戦略を失わない唯一のアルゴリズムですが、負荷分散はソース データ情報とハッシュ アルゴリズムに大きく関係します。

ソース アドレス ハッシュ方式の考え方は、クライアントを要求しているサービス コンシューマーの IP アドレスに基づいてハッシュ関数を介してハッシュ値を取得し、このハッシュ値とサーバー リストのサイズに対してモジュロ演算を実行することです。結果は、アクセスするサーバー アドレスのシリアル番号になります。送信元アドレス ハッシュ方式は、負荷分散に使用されます。同じ IP クライアントのサーバー リストが変更されていない場合は、同じバックエンド サーバーにマップされてアクセスされます。

前回の操作の疑似コード:

  1. プライベート静的Map<String, Integer > serviceWeightMap = new HashMap<String, Integer >();
  2.  
  3. 静的{
  4. serviceWeightMap.put( "192.168.1.100" , 1);
  5. serviceWeightMap.put( "192.168.1.101" , 1);
  6. serviceWeightMap.put( "192.168.1.102" , 4);
  7. serviceWeightMap.put( "192.168.1.103" , 1);
  8. }
  9.  
  10. 公共 静的文字列testConsumerHash(文字列remoteIp) {
  11.  
  12. Map<String, Integer > serverMap = new HashMap<String, Integer >();
  13. serverMap.putAll(サービス重みマップ);
  14.  
  15. //IPアドレスリストを取得
  16. <文字列>を設定します。keySet = serverMap.keySet();
  17. ArrayList<String> keyList = 新しいArrayList<String>();
  18. キーリストにすべてを追加します(キーセット)。
  19.  
  20. intハッシュコード = remoteIp.hashCode();
  21. int pos = ハッシュコード % keyList.size ( ) ;
  22.  
  23. keyList.get(pos);を返します
  24. }

このコードは Will.Shun によって書かれています。最初見たときは意味がよくわかりませんでした。後で調べてみると、説明と非常によく似ていることがわかりました。ハッシュ値はハッシュ関数によって計算されます。ハッシュ値はサーバーリストのサイズを法として計算され、結果はアクセスするサーバーアドレスのシリアル番号になります。

2. 加重ラウンドロビンアルゴリズム

重み付けラウンドロビンアルゴリズムを見てみましょう。まず、Nginx の重み設定を見てみましょう。

  1. http {
  2. 上流クラスター
  3. サーバーaの重み=1;
  4. サーバーbの重み=2;
  5. サーバーc 重み=3;
  6. }

Nginx が 6 つのクライアント要求を受信した場合、そのうち 1 つをバックエンド a に、2 つをバックエンド b に、3 つをバックエンド c に転送します。

重み付けポーリング アルゴリズムの結果は、サーバー シーケンスを生成することです。リクエストが届くたびに、次のサーバーがシーケンスから取り出され、リクエストが処理されます。

加重ラウンドロビンアルゴリズムの疑似コード:

  1. プライベート静的Map<String, Integer > serviceWeightMap = new HashMap<String, Integer >();
  2.  
  3. 静的{
  4. serviceWeightMap.put( "192.168.1.100" , 1);
  5. serviceWeightMap.put( "192.168.1.101" , 1);
  6. serviceWeightMap.put( "192.168.1.102" , 4);
  7. serviceWeightMap.put( "192.168.1.103" , 1);
  8. }
  9.  
  10.  
  11. 公共 静的文字列testWeightRoundRobin() {
  12.  
  13. // サーバーのオンラインとオフラインによって発生する同時実行の問題を回避するためにマップを再作成します
  14. Map<String, Integer > serverMap = new HashMap<String, Integer >();
  15. serverMap.putAll(サービス重みマップ);
  16.  
  17. //IPアドレスリストを取得
  18. <文字列>を設定します。keySet = serverMap.keySet();
  19. イテレータ<String> it = keySet.iterator();
  20.  
  21. リスト<文字列> serverList = 新しい ArrayList<文字列>();
  22.  
  23. (it.hasNext()) の間 {
  24. 文字列 server = it.next ();
  25. 整数の重み = serverMap.get(server);
  26. ( int i=0; i<weight; i++)の場合{
  27. serverList.add (サーバー);
  28. }
  29. }
  30.  
  31. 文字列サーバー = null ;
  32.  
  33. 同期(正){
  34. if (pos > serverList.size ()) {
  35. 位置 = 0;
  36. }
  37.  
  38. サーバー = serverList.get(pos);
  39. 位置++;
  40. }
  41.  
  42. サーバーを返す
  43. }

実際、加重ラウンドロビン アルゴリズムには欠陥があります。特定の特別な重みでは、加重ラウンドロビン スケジューリングによって不均一なインスタンス シーケンスが生成されます。この不均一な負荷により、一部のインスタンスに瞬間的に高い負荷がかかり、システム ダウンタイムが発生するリスクがあります。このスケジューリングの欠点を解決するために、滑らかな重み付けラウンドロビン スケジューリングがあります。興味のある学生は、この滑らかな重み付けラウンドロビン スケジューリングを調べてみてください。

3. 重み付きランダムアルゴリズム

加重ランダム方式は、加重ポーリング方式に似ています。バックグラウンド サーバーのさまざまな構成と負荷条件に応じて、異なる重みが構成されます。違いは、順序ではなく重みに基づいてサーバーをランダムに選択することです。

  1. プライベート静的Map<String, Integer > serviceWeightMap = new HashMap<String, Integer >();
  2.  
  3. 静的{
  4. serviceWeightMap.put( "192.168.1.100" , 1);
  5. serviceWeightMap.put( "192.168.1.101" , 1);
  6. serviceWeightMap.put( "192.168.1.102" , 4);
  7. serviceWeightMap.put( "192.168.1.103" , 1);
  8. }
  9.  
  10. 公共 静的文字列testWeightRandom() {
  11. // サーバーのオンラインとオフラインによって発生する同時実行の問題を回避するためにマップを再作成します
  12. Map<String, Integer > serverMap = new HashMap<String, Integer >();
  13. serverMap.putAll(サービス重みマップ);
  14.  
  15. //IPアドレスリストを取得
  16. <文字列>を設定します。keySet = serverMap.keySet();
  17. リスト<文字列> serverList = 新しい ArrayList<文字列>();
  18. イテレータ<String> it = keySet.iterator();
  19.  
  20. (it.hasNext()) の間 {
  21. 文字列 server = it.next ();
  22. 整数の重み = serverMap.get(server);
  23. ( int i=0; i<weight; i++)の場合{
  24. serverList.add (サーバー);
  25. }
  26. }
  27.  
  28. ランダム random = new Random();
  29. int randomPos = random.nextInt(serverList.size ( ));
  30.  
  31. 文字列サーバー = serverList.get(randomPos);
  32.  
  33. サーバーを返す
  34. }

ここでの違いは、サーバーがランダムアルゴリズムを通じて取得されることです。

実際、次のような例を考えることができます。たとえば、次のシナリオでは、セット S があり、その中に 4 つの項目 A、B、C、D が含まれています。このとき、その中からランダムに 1 つのアイテムを選択したいのですが、抽選の確率が異なります。たとえば、A を引く確率は 50%、B と C を引く確率は 20%、D を引く確率は 10% であるとします。一般的に言えば、各項目に重みを付けることができ、抽出の確率はこの重みに比例します。

4. HTTP 国際化

HTTP メッセージは、画像、ムービー、またはあらゆる種類のメディアを伝送できるのと同様に、任意の言語のコンテンツを伝送できます。 HTTP にとって、エンティティ本体は単なるバイナリ情報のコンテナです。

国際的なコンテンツをサポートするには、サーバーは各ドキュメントのアルファベットと言語をクライアントに伝え、クライアントがドキュメント内の情報を正しく文字に展開してユーザーにコンテンツを提示できるようにする必要があります。

サーバーは、HTTP プロトコルの Content-Type ヘッダーと Content-Language ヘッダーの charset パラメータを通じて、ドキュメントのアルファベットと言語をクライアントに通知します。これらのヘッダーは、エンティティ本体の「情報ボックス」の内容、画面に表示するためにコンテンツを適切な文字に変換する方法、およびその中の単語が表す言語について説明します。

同時に、クライアントは、ユーザーが理解できる言語と、ブラウザにインストールされているアルファベットエンコードアルゴリズムをサーバーに伝える必要があります。クライアントは Accept-Charset ヘッダーと Accept-Language ヘッダーを送信して、サーバーが理解できる文字セット エンコーディング アルゴリズムと言語、およびそれらの優先順位をサーバーに伝えます。

<<:  2D ガール ジェネレーター、駆動可能なニューラル ネットワーク... 2019 年の優れた機械学習プロジェクト 17 選

>>:  AIとビッグデータでカスタマージャーニーを変革する方法

ブログ    
ブログ    

推薦する

JavaScript でアルゴリズムの複雑さを学ぶ

この記事では、アルゴリズムの文脈における「二次」や「n log(n)」などの用語の意味について説明し...

情報理論に基づくキャリブレーション技術により、マルチモーダル機械学習の信頼性が向上

マルチモーダル機械学習は、さまざまなシナリオで目覚ましい進歩を遂げています。しかし、マルチモーダル学...

RPAとAIの違いを理解する

CIO は自動化と AI の導入を加速し、これらのテクノロジーが提供するスピードとコスト削減の利点を...

世界の半導体サプライチェーンにおけるリスクを排除するにはどうすればよいでしょうか?

過去数年間、テクノロジー業界は半導体サプライチェーンにおける前例のない混乱の影響を感じてきました。研...

Alibaba Cloud がバッチおよびストリーム機械学習プラットフォーム Alink をオープンソース化し、アルゴリズム開発のハードルを下げる

11月28日、アリババクラウドは、世界初の統合バッチ・ストリームアルゴリズムプラットフォームでもある...

データ保護にはAIベースのセキュリティ戦略が必要

回答者の半数だけが、自社のデータセキュリティ戦略が AI の発展に追いついていると答えました。さらに...

...

世界で最も賢い人たちは AI についてどう考えているのでしょうか?彼らは13の主要な発展傾向を予測している

[[219763]]著者:ROSIEBROWN編纂者:彭祥偉、江宝尚、小玉ウォール・ストリート・ジャ...

アメリカのAI企業の優位性を打ち破り、AI数学オープンソースモデルでアベルが1位に

ChatGPTに代表される大型モデル製品は新たな産業革命を先導し、国内外の機関が関連技術研究に積極的...

...

人工知能技術はスマートビルの未来をどのように変えるのでしょうか?

賢明なビル管理者は、AI がビルの自動化だけでなく、より適応性の高いものにするのにも役立つことを知っ...

スタンフォード大学の研究:スマートフォンの録画で人が酔っているかどうかを98%の精度で識別できる

11月9日、スタンフォード大学の最近の研究で、スマートフォンは音声パターンから人が酔っているかどうか...

...

顔認証ロック解除を使用するとき、携帯電話はどのようにしてあなたを「認識」するのでしょうか?顔認識について詳しく知る

2020年10月1日、私たちの祖国は71歳の誕生日を迎えました!我が国は、最初の人工衛星の打ち上げか...

...