人工知能は企業で実用化されつつある

人工知能は企業で実用化されつつある

AI は、従来のプロセスや従来のテクノロジーにまき散らされた魔法の精霊ではなく、ビジネスのやり方を根本的に再考するものだということが判明しました。

[[281100]]

2年前、人工知能(AI)に対する不合理な期待がピークに達しました。この記事ではそれについて議論したいと思います。今はどうでしょうか? 現実が忍び寄ってきたようですが、企業が AI にどう取り組んでいるかから判断すると、今日の AI は希望的観測ではなく、簡単に実現できる成果に重点を置いています。

これは、デロイトの「企業における AI の現状」第 2 版で得られた結論であり、人工知能に対する世界がますます真剣になっていることを表しています。そうは言っても、データにはまだいくつか厄介な問題が残っています。このレポートを詳しく見てみましょう。

退屈なことを上手にやる

まず、デロイトが調査した 1,100 人の経営幹部のうち 82% が、AI への投資からプラスの財務利益を得ていると考えています。もちろん、誰もが平等に利益を得られるわけではありません。投資から高いリターンを得たと主張するセクターには、テクノロジー/メディア/エンターテインメント/通信/専門サービスおよび工業製品(最後のカテゴリーは支出が最も少ないが、それでも大きな利益を上げている)が含まれる。対照的に、ライフサイエンスやヘルスケア、政府、金融サービス、消費者向け製品の投資収益率は比較的低いです。しかし、「低い」ROIは「存在しない」という意味ではありません。AIに投資したほぼすべての人が、AIに満足していると主張しているからです。

問題はなぜかということです。

明らかに、企業が生産性の最も低い従業員を解雇できるからではない。デロイトの2017年後半から2018年後半の調査では、「自動化による業務の削減」を挙げた経営幹部の割合はわずか2パーセントポイント(22%から24%)増加しました。一方、それほど議論の余地はないが(そしておそらくより有用である)「社内業務の最適化」というメリットは 6 パーセントポイント(36% から 42%)上昇しました。

しかし、さらに心配なのは、AI が製品開発、ひいては顧客体験を改善していないように見えることです。回答者の44%がAI投資のメリットとして「既存製品の強化」を選択しましたが、これは2017年の51%から減少しています。 「新製品の開発」についてはどうでしょうか?これも32%から27%に減少しました。実際、引用数の増加の半分以上が 2017 年から 2018 年にかけて減少しており、他に 2% 以上向上した唯一の増加は「希少な知識の獲得と応用」でした。

このデータのプラス面は、短期的な期待の下降傾向が AI に対する長期的な影響を示している可能性があることです。さらに、デロイトの推定によると、製品の改善に重点を置くということは、少し現実主義が必要であることを示唆しているかもしれない。

社内運用への移行に伴い、既存の製品やサービスへの AI の統合は依然として人気の目標ではあるものの、重視されることは減っています。実際、このような統合を行う前に運用上の変更が必要になることがよくあります。回答者は、まず運用上の変更を行う必要があることに気付いたかもしれません。

それは正しい。 AI は、従来のプロセスや従来のテクノロジーにまき散らされた魔法の精霊ではなく、ビジネスのやり方を根本的に再考するものだということが判明しました。企業が自社の文化(および関連プロセス)を変える意思がない限り、AI への投資は成功しません。

これらの数字は合わない

この現実感は歓迎すべきものですが、レポート内のデータのすべてが意味のあるものであるわけではありません。たとえば、「競合他社と比較して、回答者は自社の AI 導入によって…が可能になったと回答していますか」という質問に回答するよう求められた場合、さまざまな回答が予想されるかもしれませんが、おそらく「AI のせいで競合他社に負けているわけではありません」という回答も含まれるはずです。しかし、結果は次のようになります。

  • 16% - 追いつく
  • 20%-レベルを維持する
  • 27% - わずかにリード
  • 28%拡大リード
  • 9% - トップの座に躍り出る

では、誰も取り残されないのでしょうか? AI に関しては、明らかに私たちは皆平均以上です。確かに、調査対象となった 1,100 人が全員まったく異なる業界を代表しており、調査対象となっていない人全員が AI 主導の業界大手に追い抜かれることになるかもしれないが、そうではないかもしれない。おそらく、16%はまだ大衆に追いついておらず、20%は遅れをとっている、といった具合です。

おそらく、経営幹部は次のサプライズを楽観的に見ているのでしょう。回答者の 88% が来年 (2019 年) に AI 投資を増やす予定であり、54% が 10% 以上の増加を予想しています。業界の少なくとも半分の投資収益率がいかに低かったか覚えていますか? どうやら、それがさらなる支出への熱意を弱めていないようです。でも心配しないでください。デロイトが書いているように、「調査対象となった企業のうち、財務収益を測定するために必要な主要業績指標を測定している企業は 50% 未満です。」

言い換えれば、「AI への投資が実を結ぶかどうかは分からないが、そうなることを期待して、プロセスにさらに力を入れよう」ということです。この無関心な見方を受け入れるのは簡単ですが、期待される利益に関しては実用主義は二の次になります。組織が、高額な空想ではなく段階的なプロセス改善に注力している限り、組織はそうした空想に投資できるはずですが、これは今日でもより慎重な投資にかかっています。

<<:  顔認証は必見!顔のなりすまし防止、クロスポーズ認識などを実現する方法を学ぶための 5 つの論文 (リンク付き)

>>:  サイバーセキュリティにおける AI の 4 つの主要なユースケースを理解する

ブログ    
ブログ    

推薦する

...

生成AIとクラウドの相互利益を探る

近年、生成 AI とクラウドの融合に関心が集まっているのには理由があります。人工知能 (AI) とク...

AIインテリジェンスを活用して企業の効率性を向上させる方法

人工知能はさまざまな分野から深い注目を集めており、人工知能分野のディープラーニングとインテリジェント...

AIビッグモデルオープンソースヒーロー!ザッカーバーグ氏はLLaMAリークについて議会から質問を受けた。「慣れている」

ザッカーバーグ氏は最近また大きなトラブルに巻き込まれた。リチャード・ブルーメンソール議員(プライバシ...

初心者のためのホームオートメーション完全ガイド

スマートホームはテクノロジーを活用して、居住者にさらなる利便性、節約、快適性、セキュリティを提供しま...

合理的強化学習はボトルネックに達しました。進化的アルゴリズムがその後継者となるでしょうか?

人工知能とゲーム理論の交差点から強化学習が生まれましたが、ゲーム理論に基づく問題解決は通常、合理性と...

百度と東軟教育が共同で「東軟百度人工知能アカデミー」を設立し、AIの「人材不足」を打破

インテリジェント時代が加速しており、人工知能の人材はAIの発展を支える第一のリソースとして特に重要で...

GoogleがAIトレーニングを高速化する新手法を提案、GPUのアイドル時間を圧縮して3倍以上高速化

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

34 個の事前トレーニング済みモデルを比較して再現します。PyTorch と Keras のどちらを選択しますか?

Keras と PyTorch は確かに最も初心者に優しいディープラーニング フレームワークであり...

2019年のAI研究開発のホットスポットのレビュー

人工知能技術を継続的に改善することで、より優れたインテリジェントな世界を創造することができます。 2...

近年、軍事用人工知能スタートアップが人気を集めている理由

ロシアとウクライナの紛争が始まって2週間、データ分析会社パランティアのCEO、アレクサンダー・カープ...

2022年、ビッグモデルはどこまで行けるでしょうか?

[[442868]]著者: ユン・チャオこの記事は、2021年の業界レビュー、2021年のビッグモ...

ファイアウォールは再び進化します。よりスマートで安全になりましたか?

ハッカーがネットワーク攻撃を開始すると、まず会社のパブリック IP で SSH サービスに使用される...

知識をグラフに変換するには、いくつのステップが必要ですか?インターネット上で最も包括的な清華ナレッジグラフレポートの89ページ

ナレッジグラフは、人工知能の重要な分野技術です。2012年にGoogleによって提案され、大規模な知...

人工知能が将来経験する7つの段階

2030年までに、人工知能のおかげで世界のGDPは15.7兆ドル増加するでしょう。企業の 84% は...