グラフ埋め込み、グラフ表現、グラフ分類、グラフニューラルネットワーク、この記事では必要なグラフモデリング論文を紹介します。もちろん、それらすべてにはサポート実装があります。 グラフは非常に魔法のような表現方法です。人間関係のネットワーク、道路交通網、情報インターネットなど、人生におけるほとんどの現象や状況はグラフで表現できます。マルクス主義哲学が提唱するように、物事は普遍的につながっており、グラフはこのつながりを捉えることができるため、グラフを使用して世界を記述するのが最善の方法です。 しかし、グラフなどの構造化データには問題があります。後続の計算を実行する前に、まずグラフを用意する必要があります。ただし、グラフの作成は簡単ではなく、現時点ではこれより優れた自動化方法はないため、最初のステップには依然として多大な労力が必要です。すべてのノードとエッジが決定されている限り、グラフは非常に強力で複雑なツールであり、モデルはグラフ内のさまざまな隠れた知識を推測することもできます。 異なる時間でのグラフモデリング 実際、グラフ モデリングは、グラフ ニューラル ネットワークと従来のグラフ モデルに分けることができます。これまでのグラフモデリングは、主にグラフ埋め込みに依存して、さまざまなノードの低次元ベクトル表現を学習していました。これは、NLP の単語埋め込みの考え方を借用したものです。グラフ ニューラル ネットワークは、ディープラーニングを使用して、より強力なグラフ操作とグラフ表現を実行します。 グラフ埋め込みアルゴリズムは、ネットワーク ノードを低次元ベクトルで表現する方法に重点を置いており、類似のノードが表現空間内で近くなるようになっています。対照的に、GNN の最大の利点は、1 つのノードだけを意味的に表現できるわけではないことです。 たとえば、GNN はサブグラフの意味情報を表し、ネットワーク内のノードのごく一部の意味を表現することができますが、これは従来のグラフ埋め込みでは簡単にはできませんでした。 GNN は、グラフ ネットワーク全体における情報の伝播と集約をモデル化することもできます。つまり、グラフ ネットワーク全体をモデル化できます。さらに、GNN は周囲のノードの豊富な情報をより適切にモデル化できるため、単一のノードをより適切に表現することもできます。 従来のグラフモデリングでは、ランダムウォークや最短経路などのグラフ手法は記号的知識を活用しますが、これらの手法では各ノードの意味情報を有効に活用する方法がありません。ディープラーニング技術は、構造化されていないテキスト、画像、その他のデータの処理に優れています。つまり、GNN は、ディープラーニング技術をシンボリック グラフ データに適用するもの、つまり、非構造化データから構造化データに拡張するものと考えることができます。 GNN は、シンボリック表現と低次元ベクトル表現を完全に統合して、両方の利点を最大限に活用できます。 グラフモデリングの論文とコード GitHub 上のオープンソース作業では、開発者は、古典的なグラフ埋め込み、グラフカーネルからグラフニューラルネットワークに至るまで、グラフモデリングに関連する論文と実装を収集しました。これらは、グラフ埋め込み、グラフ分類、グラフ表現などの分野において非常に重要な論文です。 プロジェクトアドレス: https://github.com/benedekrozemberczki/awesome-graph-classification このプロジェクトで収集された論文の主な分野は次のとおりです。 1. 因数分解 2. スペクトルと統計の指紋 3. グラフニューラルネットワーク 4. グラフカーネル |
<<: マスク氏の「脳変革計画」ではどのスキルツリーを活性化する必要があるのか?
>>: ディープニューラルネットワークはディープフェイクを検出できる
AI に関する論文数は劇的に増加していますが、本当に AI が「必須」であると考えている研究者はわ...
新しい論文の著者は、コード生成を「強化」する方法を提案しています。コード生成は人工知能においてますま...
研究結果をブログのネタとして使うことに慣れていないのですが、次の点に注目しました。Vulcan Cy...
[[353152]]人工知能は新興の破壊的技術として、科学技術革命と産業変化によって蓄積された膨大な...
[[212334]]モバイル インターネット時代に生きる技術オタクとして、私は嫌がらせのテキスト メ...
ロボティック プロセス オートメーション (RPA) は、今日のデジタル サポート エクスペリエンス...
この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...
AIは中国のインターネットを汚染する「犯人」の1つとなった。問題はこれです。最近、誰もが AI に相...
[[435758]]序文モノのインターネット (IoT) の発展により、さまざまな無線信号 (Wi...
多くの産業企業は実際に必要な量よりも多くのデータを保有していますが、人工知能への取り組みは期待を下回...
【51CTO天津6月29日】本日、「偉大な知能時代へ向かう」をテーマとする世界知能会議が天津梅江会議...
OpenAI が成功に忙しい一方で、シリコンバレーの最大のライバルである Anthropic は、...
「人工知能+ヘルスケア」が急速に発展しています。医学は、帰納的論理、経験的学習、証拠に基づく応用に依...
ケーキも食べて、ケーキも残したいです! BAIR は、正確性と解釈可能性のバランスをとったニューラル...