マイクロソフトが27億パラメータのPhi-2モデルを発表、多くの大規模言語モデルを上回る性能を発揮

マイクロソフトが27億パラメータのPhi-2モデルを発表、多くの大規模言語モデルを上回る性能を発揮

マイクロソフトは、Phi-2 と呼ばれる人工知能モデルをリリースしました。このモデルは、その 25 倍の規模を持つ、より大規模で確立されたモデルに匹敵するか、それを上回る優れた性能を発揮します。

マイクロソフトは本日のブログ投稿で、Phi-2 は 27 億のパラメータを持つ言語モデルであり、推論、言語理解、数学、コーディング、常識能力を評価する複雑なベンチマークで他のベースモデルと比較して「最先端のパフォーマンス」を示したと発表した。 Phi-2 は現在、Microsoft Azure AI Studio のモデル カタログを通じて利用可能であり、研究者や開発者は今すぐにサードパーティ アプリケーションに統合できます。

11月のIgniteカンファレンスでマイクロソフトの最高経営責任者サティア・ナデラ氏(写真)が初めて公開したPhi-2は、同社が「教科書品質」と呼ぶデータ、特に知識と、他のモデルによってもたらされる洞察を学習する技術によって強力になっている。

Phi-2 の興味深い点は、伝統的に、大規模言語モデルの能力は常に、パラメータで測定される全体的なサイズと密接に関連していることです。通常、パラメータが大きいモデルの方が強力ですが、Phi-2 の出現によりこの状況は変わりました。

Microsoft によれば、Phi-2 はいくつかのベンチマークで、Mistral AI の 70 億パラメータの Mistral、Meta Platforms の 130 億パラメータの Llama 2 など、より大規模なベースモデルの能力に匹敵するか、あるいは上回っていることを示し、さらにいくつかのベンチマークでは 700 億パラメータの Llama-2 を上回っているという。

おそらく最も驚くべき主張は、先週リリースされた Gemini シリーズの LLM の中で最も効率的な Google の Gemini Nano よりも優れた性能を発揮するという点です。デバイス上のタスク用に設計された Gemini Nano は、スマートフォン上で実行でき、テキストの要約、高度な校正、文法の修正、コンテキストに応じたスマートな返信などの機能を有効にできます。

マイクロソフトの研究者によると、Phi-2 でカバーされるテストは、言語理解、推論、数学、コーディング課題など、広範囲に及ぶという。

同社によれば、Phi-2がこのような優れた結果を達成したのは、推論、知識、常識を教えるために設計された、厳選された教科書レベルのデータで訓練されているためであり、つまり、より少ない情報からより多くのことを学習できるのだ。 Microsoft の研究者は、より小さなモデルから知識を獲得できる技術も使用しました。

注目すべきことに、Phi-2は、AIモデルの動作を改善するためによく使用される、人間のフィードバックに基づく強化学習や指導の微調整などの技術を使用せずに、その優れたパフォーマンスを達成していると研究者らは述べている。これらの技術を使用していないにもかかわらず、Phi-2 は、これらの技術を使用する他のオープンソース モデルよりも、バイアスと有害コンテンツの削減において優れたパフォーマンスを発揮します。同社はこれをカスタマイズされたデータの編集によるものだと考えている。

Phi-2 は、Microsoft の研究者が「小規模言語モデル (SLM)」と呼ぶ一連のモデルの最新版です。このシリーズの最初のモデルは Phi-1 で、今年初めに初めてリリースされ、13 億のパラメータを持ち、基本的な Python コーディング タスク向けに微調整されています。同社は9月に、13億のパラメータを持ち、自然言語プログラミングを使用して生成されたさまざまな合成テキストを含む新しいデータソースを使用してトレーニングされるPhi-1.5をリリースしました。

マイクロソフトは、Phi-2 の効率性により、研究者が AI の安全性、説明可能性、言語モデルの倫理的開発の強化などの分野を研究するのに理想的なプラットフォームになると述べています。

<<:  インテリジェントロボットを活用してビジネス運営を強化する方法

>>:  RayDF: リアルタイムレンダリング!光線に基づく3D再構成の新しい方法

推薦する

機械学習入門: HelloWorld (Tensorflow)

ソースコードのダウンロードアドレス: https://share.weiyun.com/a0c166...

ByteDanceが大規模モデルトレーニングフレームワークveGiantModelをオープンソース化、パフォーマンスが最大6.9倍向上

最近、ByteDanceの応用機械学習チームは、veGiantModelという大規模モデルトレーニン...

「黄金の3月と銀の4月」が到来し、AIはすでに人材採用の分野に浸透しています。あなたにはどのような影響があるでしょうか?

2017年と比べると、最近の人工知能分野のニュースは人々を怒らせることはほとんどないようだ。おそら...

金融技術分野における人工知能と機械学習の応用と開発

[[383269]] [51CTO.com クイック翻訳] 過去数年間、金融業界では、業界の絶え間な...

...

...

産業規模は500億に迫る。産業用ロボット業界は今後何をすべきか?

近年、ロボット技術は急速に発展しており、食品配送ロボットや掃除ロボットなど、さまざまなサービスロボッ...

人工知能が「骨董品鑑定」の分野に参入、人間の職業に再び影響が及ぶか?

データの「食料」が増え続け、入手が容易になるにつれ、現在の人工知能は機械学習、言語処理、対話機能にお...

人工知能の「最初の一滴」がエンタープライズIT自動化に属する理由

企業の情報技術の意思決定者として、上級管理職や部門長に AI のビジネス価値を示す必要がある場合、I...

...

184.3億ドルを突破! 「中国スピード」が人工知能の分野で再び出現

AlfGOと韓国のプロ囲碁選手、イ・セドルの対局以来、人工知能は幅広い注目を集めているかもしれない。...

李開復氏、ペントランド氏と会談:AIはワンマンショーではない、AI冷戦は避けるべき

最近、Sinovation Venturesの会長兼CEOであるKai-Fu Lee博士とAlex ...

...

...