生成AIの構築には、大きなモデルだけでは不十分

生成AIの構築には、大きなモデルだけでは不十分

生成型人工知能 (GenAI) の急速な台頭により、企業はビジネス アプリケーションでこのテクノロジーの力を活用するための新しい革新的な方法を急いで見つけようとしています。多くの企業は、大規模言語モデル (LLM) によって AI 駆動型ビジネス アプリケーションの構築方法が一変し、大規模エンタープライズ LLM モデルにデータを入力すれば、それで作業が完了すると考えています。しかし、物事はそれほど簡単ではありません。

調査・コンサルティング会社 Forrester は、GenAI ビジネス アプリケーションには一般的な LLM 以上のものが必要であることを強調した新しいレポートを発表しました。最も慎重に調整され、十分にトレーニングされた LLM であっても、GenAI ベースのアプリケーションを構築して安全に実行するには不十分な場合があります。この単純なアプローチでは、組織は独自の知識をすべて活用して業務を行うことはできません。また、スケーラビリティ、セキュリティ、コストの問題など、他のいくつかのリスクも存在します。

Forrester のレポートは、世界中の 2,000 社を超える企業が GenAI 駆動型ビジネス アプリケーションを作成できるよう、最大手のサービス プロバイダー 15 社が GenAI をどのように活用しているかを調査した結果に基づいています。レポートの調査結果によると、企業は GenAI ベースのアプリケーションを安全かつ効率的に実行するために、「レイヤー、ゲート、パイプライン」のアーキテクチャを組み立てる必要があることが示唆されています。

「レイヤー、ゲート、パイプ」アーキテクチャは、多くのインテリジェント レイヤーのリソースを活用して、内部機能と外部機能を統合します。また、人、企業、モデル自体を保護するために、入力および出力制御ゲートも必要です。さらに、リクエストを出力に変換するには、インテリジェンス レイヤーをプロンプトし、埋め込み、オーケストレーションするアプリケーション パイプラインが必要です。最後に、結果をテストして監視し、それに応じて調整するためのテストと学習のサイクルが必要です。

レポートでは、「レイヤー、ゲート、パイプライン」アーキテクチャの要素をさらに深く掘り下げ、インテリジェンス レイヤーには、汎用、組み込み、特殊な GenAI モデルなど、幅広い機能が含まれていると指摘しています。

組織が自ら作成し管理すべきインテリジェント リソースには、ソフトウェア アプリケーション、AI/ML モデル、プライベート GenAI モデル、構造化データと非構造化データ、人々の手がかりや行動などがあります。組織がベンダーから入手すべきインテリジェンス ソースには、ドメイン固有の GenAI モデル、パブリック GenAI ツール、および SaaS アプリケーションなどのバンドルされた GenAI モデルが含まれます。

入力ゲートを使用すると、不正なリクエスト、誤ったプロンプト、危険な検索を拒否するのに役立ちます。また、漠然としたリクエストを回答可能なプロンプトに変換することもできます。出力ゲートは、コンプライアンス要件、セキュリティなどに基づいて問題の出力を検証するのに役立ちます。

アプリケーション パイプラインは、API ファーストのワークフローを通じてこれらすべてを接続するために使用されます。これらは、インテリジェンス レイヤーからのリソースをつなぎ合わせて、エンドツーエンドでスムーズに流れるようにするのに役立ちます。アーキテクチャの最後の要素は、テスト用のフィードバック ループを介したテストです。これらは、アプリケーションの信頼性、自信、有効性を構築するのに役立ちます。

Forrester のレポートでは、今後数年間で GenAI アプリケーションをサポートする完全なアーキテクチャを構築する際に、企業は現在、個々のパーツからアプリケーションを組み立てることができるとも付け加えています。適切な注意を払った場合にのみ、企業は GenAI ビジネス アプリケーションのパワーを最大限に活用できます。

<<:  データインテリジェンスのない人工知能は人工的である

>>: 

ブログ    

推薦する

韓国の常温超伝導体の著者が論文撤回を要求!論文には欠陥があり、改善された後、通常のジャーナルに移されました

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

TensorFlow について知っておくべき 9 つのこと

[[241153]]キャシー・コジルコフマシンハートが編集参加者: Gao Xuan、Lu Goog...

成功の秘訣: AIを活用したオンライン文書検証

[[410827]] [51CTO.com クイック翻訳]急速な技術開発と進歩の時代において、個人情...

18カ国が支持するAI安全ガイドラインが発表

英国の国立サイバーセキュリティセンター(NCSC)は、AIシステムの開発者やプロバイダーが「期待通り...

Telstra はディープラーニングを使用してネットワークの課題に取り組んでいます。

テルストラは、機器の故障を早期に予測し、音声やテキストによる詐欺に対抗する方法を見つけるために、ネッ...

...

...

ベセット氏との対話:自動運転車が人間の信頼を勝ち取るのはいつでしょうか?

[[257915]]編集者注:自動運転車が私たちの信頼を得られるのはいつでしょうか? 「十分に安全...

Baichuan Intelligence が数千億のパラメータを持つ大規模モデルをリリース、その中国の能力は GPT-4 を上回る!

制作:51CTO テクノロジースタック(WeChat ID:blog) 「今年中にChatGPTのレ...

[文字列処理アルゴリズム] 入力文字列の各単語の順序を逆にするアルゴリズム設計とCコード実装

1. 要件の説明文字列を入力し、文字列内の単語を逆順に組み立てて出力するプログラムを作成します。たと...

...

なぜ誰もディープラーニングの本質を明らかにしないのでしょうか? !

[[213484]]人類はゆっくりと世界の本質に近づいています。物質は単に情報パターンの担い手にす...

高校時代の位相除算と位相減算のアルゴリズムについて

[[356850]]プログラミングの本質はアルゴリズムから来ており、アルゴリズムの本質は数学から来て...

「AI+」が世界を変える!さまざまな分野における 5 つの主要な AI トレンド

人工知能は現代世界で最も注目され、最も議論されているトピックであり、20年後には人々の世界観を変える...