Apple の「マトリョーシカ」拡散モデルはトレーニング ステップ数を 70% 削減します。

Apple の「マトリョーシカ」拡散モデルはトレーニング ステップ数を 70% 削減します。

Apple による最近の研究により、高解像度画像における拡散モデルのパフォーマンスが大幅に向上しました。

この方法を使用すると、同じ解像度の画像のトレーニング ステップ数が 70% 以上削減されます。

1024×1024 の解像度では、画像の品質が最大化され、すべての詳細が鮮明に表示されます。

Appleはこの成果をMDMと名付けました。DMはDiffusion Modelの略で、最初のMはMatryoshkaを表しています。

MDM は、本物の入れ子人形のように、高解像度のプロセスの中に低解像度のプロセスを入れ子にし、複数のレイヤーにネストします。

高解像度と低解像度の拡散プロセスが同時に実行されるため、高解像度プロセスにおける従来の拡散モデルのリソース消費が大幅に削減されます。

解像度 256×256 の画像の場合、バッチ サイズが 1024 の環境では、従来の拡散モデルでは 150 万ステップのトレーニングが必要ですが、MDM では 39 万ステップしか必要ありません。これは 70% 以上の削減になります。

さらに、MDM はエンドツーエンドのトレーニングを使用し、特定のデータセットや事前トレーニング済みのモデルに依存しません。生成品質を確保しながら高速化を実現し、柔軟に使用できます。

高解像度の画像を描画できるだけでなく、16×256²の動画を合成することもできます。

一部のネットユーザーは、Appleがついにテキストと画像を関連付けたとコメントした。

では、MDM の「入れ子人形」テクノロジーは具体的にどのように機能するのでしょうか?

全体的かつ漸進的なアプローチを組み合わせる

トレーニングを開始する前に、データを前処理する必要があります。高解像度の画像は、特定のアルゴリズムを使用して再サンプリングされ、さまざまな解像度のバージョンが取得されます。

次に、これらの異なる解像度のデータを使用して、共同 UNet モデリングを実行します。小さな UNet は低解像度を処理し、高解像度を処理する大きな UNet にネストされます。

クロス解像度接続により、さまざまなサイズの UNets が機能とパラメータを共有できます。

MDM トレーニングは段階的なプロセスです。

モデリングは共同で行われますが、トレーニングプロセスは高解像度から始まるのではなく、低解像度から始めて徐々に拡大していきます。

そうすることで、膨大な量の計算を回避できるだけでなく、低解像度の UNet 事前トレーニングによって高解像度のトレーニング プロセスを加速できるようになります。

トレーニング プロセス中に、より高解像度のトレーニング データが徐々にプロセス全体に追加され、モデルが徐々に増加する解像度に適応し、最終的な高解像度のプロセスにスムーズに移行できるようになります。

ただし、全体的に見ると、高解像度のプロセスが徐々に追加された後も、MDM のトレーニングはエンドツーエンドの共同プロセスのままです。

異なる解像度での共同トレーニングでは、複数の解像度での損失関数を一緒に使用してパラメータを更新し、多段階のトレーニングによって発生するエラーの蓄積を回避します。

各解像度には対応するデータ項目の再構築損失があり、異なる解像度の損失は重み付けされて結合されます。生成の品質を確保するために、低解像度の損失重みは大きくなります。

推論フェーズでは、MDM は並列処理と増分性を組み合わせた戦略も採用します。

さらに、MDM は、事前にトレーニングされた画像分類モデル (CFG) を使用して、生成されたサンプルの最適化をより合理的な方向に導き、低解像度のサンプルにノイズを追加して、高解像度のサンプルの分布に近づけます。

では、MDM の効果は何でしょうか?

SOTAに一致するパラメータが少ない

画像に関しては、ImageNet および CC12M データセットでは、MDM の FID (値が低いほど効果が高い) および CLIP のパフォーマンスが、通常の拡散モデルよりも大幅に優れています。

FID は画像自体の品質を評価するために使用され、CLIP は画像とテキスト指示の一致度を記述します。

DALL E や IMAGEN などの SOTA モデルと比較すると、MDM のパフォーマンスも非常に近いですが、MDM のトレーニング パラメーターはこれらのモデルよりもはるかに少なくなっています。

MDM は通常の拡散モデルよりも優れているだけでなく、他のカスケード拡散モデルよりも優れています。

アブレーション実験の結果によると、低解像度のトレーニングのステップ数が多いほど、MDM 効果が顕著になります。一方、ネストされたレベル数が多いほど、同じ CLIP スコアを達成するために必要なトレーニング ステップ数が少なくなります。

CFG パラメータの選択に関しては、複数のテスト後の FID と CLIP のトレードオフの結果です (CLIP スコアが高いほど CFG 強度が増加することを意味します)。

<<: 

>>:  オープンソース版「ChatGPT Plus」が登場。データ分析、プラグイン通話、自動インターネットアクセス、現実世界のインテリジェントエージェントの実装が可能

ブログ    
ブログ    

推薦する

初心者のための CNN と Keras のクイックガイド

[[201203]] 1. Keras を使用する理由ディープラーニングが大人気の昨今、サードパーテ...

2021 年の人工知能のトップ 10 トレンド

コロナウイルスのパンデミック以前、AI業界は2020年に大きな成長を遂げると予想されていました。 2...

TensorFlow について知っておくべき 9 つのこと

[[241153]]キャシー・コジルコフマシンハートが編集参加者: Gao Xuan、Lu Goog...

...

Facebook の 10,000 ワードの記事: すべての AI モデルが PyTorch フレームワークに移行

PyTorch は 2017 年のリリース以来、GitHub の人気リストで急速にトップに立ち、一時...

将来、仮想現実、人工知能、そして人体はどのように融合するのでしょうか?

仮想現実や人工知能などのテクノロジーが人体とどのように統合されるかを探ります。将来、仮想現実と現実の...

技術者がAIを活用してキャリアを守る方法

「自動化」や「人工知能(AI)」などの「技術革新」がビジネスや仕事の本質を変えていることは間違いあり...

オンラインショッピングデータに基づくスマートドアロック「ショッピングガイド」

ビル・ゲイツは1995年に「The Road Ahead」の中でこう述べています。「将来、スマート家...

...

トランスフォーマーに挑むマンバの起源とは?著者の博士論文はSSMの進化の道筋を明らかにしている

大型模型の分野では、トランスフォーマーが全容を一手に引き受けています。しかし、モデルのサイズが拡大し...

...

人工知能はスポーツや芸術教育における革新的な発展をどのように促進できるのでしょうか?

[[407981]]著者テンセント研究所の上級研究員、周丹氏趙雲傑 テンセント研究所 研究助手20...

...

膨大な顔情報が収集されている: 315 Galaが顔認識の混乱を暴露

3月15日、毎年恒例のCCTV Finance 3.15 Galaが開催されています。序文から判断す...

速報です!李菲菲の一番弟子カルパシーが辞任、テスラの自動運転は危機に瀕しているのか?

たった今、テスラはまた別の技術専門家を失いました!テスラAIのシニアディレクターであり、自動運転ビジ...