GPT-3.5 を選択すべきでしょうか、それとも Llama 2 などのオープンソース モデルを微調整すべきでしょうか?総合的に比較した結果、答えは

GPT-3.5 を選択すべきでしょうか、それとも Llama 2 などのオープンソース モデルを微調整すべきでしょうか?総合的に比較した結果、答えは

GPT-3.5 の微調整には非常にコストがかかることはよく知られています。この論文では、手動で微調整されたモデルが、わずかなコストで GPT-3.5 のパフォーマンスに近づくことができるかどうかを実験的に検証します。興味深いことに、この記事はまさにそれを行っています。

この論文では、SQL タスクと機能表現タスクの結果を比較して、次のことがわかりました。

  • GPT-3.5 は、両方のデータセット (Spider データセットと Viggo 機能表現データセットのサブセット) で、Lora で微調整された Code Llama 34B よりもわずかに優れたパフォーマンスを発揮します。
  • GPT-3.5 はトレーニングに 4 ~ 6 倍のコストがかかり、展開にもコストがかかります。

この実験の結論の 1 つは、GPT-3.5 の微調整は初期検証作業には適しているが、その後は Llama 2 のようなモデルが最適な選択肢になる可能性があるということです。簡単にまとめると、

  • 特定のタスク/データセットに対して微調整が適切なアプローチであることを検証する場合、または完全に管理された環境が必要な場合は、GPT-3.5 を微調整します。
  • コストを節約したい場合、データセットから最大限のパフォーマンスを引き出したい場合、トレーニングおよびデプロイメント インフラストラクチャの柔軟性を高めたい場合、または一部のデータを非公開にしたい場合は、Llama 2 などのオープン ソース モデルを微調整してください。

次に、この記事がどのように実装されているかを見てみましょう。

下の図は、SQL タスクと機能表現タスクで収束するようにトレーニングされた Code Llama 34B と GPT-3.5 のパフォーマンスを示しています。結果は、GPT-3.5 が両方のタスクで優れた精度を達成することを示しています。

ハードウェアの使用に関しては、実験では A40 GPU が使用され、1 時間あたり約 0.475 ドルのコストがかかりました。

さらに、この実験では、Spider データセットのサブセットと Viggo 機能表現データセットという、微調整に非常に適した 2 つのデータセットが選択されました。

GPT-3.5 モデルと公平に比較​​するために、Llama は最小限のハイパーパラメータの微調整を受けました。

私たちの実験における 2 つの重要な選択は、完全なパラメータの微調整ではなく、Code Llama 34B と Lora の微調整を使用することです。

実験は、Lora ハイパーパラメータの微調整に関するルールにほぼ従いました。Lora アダプターは次のように構成されました。

次に、SQL ヒントの例を示します。

SQLプロンプトは部分的に表示されています。完全なプロンプトについては元のブログを参照してください。

この実験では完全なSpiderデータセットは使用しなかった。

 department : Department_ID [ INT ] primary_key Name [ TEXT ] Creation [ TEXT ] Ranking [ INT ] Budget_in_Billions [ INT ] Num_Employees [ INT ] head : head_ID [ INT ] primary_key name [ TEXT ] born_state [ TEXT ] age [ INT ] management : department_ID [ INT ] primary_key management.department_ID = department.Department_ID head_ID [ INT ] management.head_ID = head.head_ID temporary_acting [ TEXT ]

この実験では、sql-create-context データセットと Spider データセットの交差部分を使用することを選択します。モデルに提供されるコンテキストは、次のような SQL 作成コマンドです。

 CREATE TABLE table_name_12 (class VARCHAR, frequency_mhz VARCHAR, city_of_license VARCHAR)

SQL タスク コードとデータ アドレス: https://github.com/samlhuillier/spider-sql-finetune

機能表現のヒントの例を以下に示します。

機能表現のヒントは部分的に表示されています。完全なヒントについては元のブログをご覧ください。

出力は次のようになります。

 verify_attribute(name[Little Big Adventure], rating[average], has_multiplayer[no], platforms[PlayStation])

評価フェーズでは、2 つの実験はすぐに収束しました。

機能表現タスクコードとデータアドレス: https://github.com/samlhuillier/viggo-finetune

詳細については、元のブログをご覧ください。

<<:  OpenAIは静かにその中核となる価値観を改訂し、汎用人工知能の構築に注力する

>>: 

ブログ    
ブログ    
ブログ    

推薦する

機械学習プロジェクト用の Python インターフェースを設計する方法

序文機械学習プロジェクトを実行するには、まずモデルを(ほとんどの場合は予測 API として)デプロイ...

...

裕福なアメリカ人の 41% は、意識をアップロードすることで不老不死を実現したいと考えています。劉慈欣の「人類の存続」は私たちの未来となるのでしょうか?

意識のアップロードは、人間が将来の自分たちの存在を想像する方法として常に存在してきました。このアイデ...

心理測定分析における AI とビッグデータの活用

心理測定分析における AI とビッグデータの活用人工知能 (AI) とビッグデータは、採用担当者が個...

...

アルゴリズム取引におけるビッグデータ分析の活用

ウォーレン・バフェットの資産が 5000G あることをご存知ですか? 反対派や懐疑派の意見に反して、...

...

医療と人工知能の相互統合が眼科治療に新たな窓を開く

目は体表にある器官の中で画像データを取得しやすい器官であり、その健康状態は人々の生活や学習に与える影...

世界がH100を奪い合っている! Nvidia が GPU の優位性を達成、主任科学者が成功の 4 つの要素を明らかに

現在、NVIDIA は GPU の優位性の座にしっかりと座っています。 ChatGPT の誕生により...

人工知能:この冷たい水はちょうどいいタイミングで注がれます!

最近、AI(人工知能)同時通訳詐欺事件をめぐる議論がテクノロジーや翻訳界で話題となり、「AIは人間を...

ツールの選択からチームのコミュニケーションまで、ML エンジニアが実稼働レベルの機械学習を段階的に構築する様子をご覧ください。

機械学習がユーザーに真の価値をもたらすためには、それを本番システムに導入する必要があります。 AI ...

人工知能で電力網の問題を解決する

MIT-IBM Watson AI ラボの研究者たちは、電力網の問題のトラブルシューティングに人工知...

世界図書デー: スマートテクノロジーがいかにして優れた読書環境を作り出すか

4月23日は第25回「世界本の日」です!今日は本を読みましたか?ゴーリキーはかつてこう言った。「本は...

トレンドにおける危険とチャンス: 生成 AI の黄金期をどう捉えるか?

ChatGPTは今年9月末に音声チャットと画像認識機能を追加しました。テキスト駆動型と比較して、C...

自然特集:バイオニック群ロボットの登場、工学上の大きな進歩

ネイチャー誌の表紙には、工学上の大きな進歩、つまり生物の細胞コロニーを模倣するロボットの登場が発表さ...