みなさんこんにちは、ピーターです〜 この記事は、Kaggle での機械学習の実践的なケーススタディです。機械学習に基づく信用デフォルト予測です。複数のモデルを使用しており、最終結果ではランダム フォレストモデルが 1 位であることが示されています。 主な内容は次のとおりです。 - 基本データ情報とEDA
- データの前処理と特徴エンジニアリング
- 複数モデル予測と指標比較インポートライブラリ
ライブラリのインポート[1]では: import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import missingno as mso import seaborn as sns import warnings import os import scipy from scipy import stats from scipy.stats import pearsonr from scipy.stats import ttest_ind from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from imblearn.over_sampling import SMOTE from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.naive_bayes import CategoricalNB from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from xgboost import XGBClassifier from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.metrics import accuracy_score import warnings warnings.filterwarnings("ignore") データの基本情報データのインポート[2]では: df = pd.read_csv("data.csv") df.head() アウト[2]: 基本情報[3]では: # 整体的数据量df.shape アウト[3]: (614, 13) [4]では: # 全部字段df.columns アウト[4]: Index(['Loan_ID', 'Gender', 'Married', 'Dependents', 'Education', 'Self_Employed', 'ApplicantIncome', 'CoapplicantIncome', 'LoanAmount', 'Loan_Amount_Term', 'Credit_History', 'Property_Area', 'Loan_Status'], dtype='object') 借り手のID、性別、既婚かどうか、勤務部門、学歴などの項目を確認できます。 [5]では: # 查看字段类型df.dtypes アウト[5]: Loan_ID object Gender object Married object Dependents object Education object Self_Employed object ApplicantIncome int64 CoapplicantIncome float64 LoanAmount float64 Loan_Amount_Term float64 Credit_History float64 Property_Area object Loan_Status object dtype: object [6]では: # 查看描述统计信息df.describe() アウト[6]:
| 申請者収入 | 共同申請者の収入 | ローン金額 | ローン金額期間 | クレジット履歴 | カウント | 614.000000 | 614.000000 | 592.000000 | 600.00000 | 564.000000 | 平均 | 5403.459283 | 1621.245798 | 146.412162 | 342.00000 | 0.842199 | 標準 | 6109.041673 | 2926.248369 | 85.587325 | 65.12041 | 0.364878 | 分 | 150.000000 | 0.000000 | 9.000000 | 12.00000 | 0.000000 | 25% | 2877.500000 | 0.000000 | 100.000000 | 360.00000 | 1.000000 | 50% | 3812.500000 | 1188.500000 | 128.000000 | 360.00000 | 1.000000 | 75% | 5795.000000 | 2297.250000 | 168.000000 | 360.00000 | 1.000000 | 最大 | 81000.000000 | 41667.000000 | 700.000000 | 480.00000 | 1.000000 |
欠損値の状況[7]では: df.isnull().sum() アウト[7]: Loan_ID 0 Gender 13 Married 3 Dependents 15 Education 0 Self_Employed 32 ApplicantIncome 0 CoapplicantIncome 0 LoanAmount 22 Loan_Amount_Term 14 Credit_History 50 Property_Area 0 Loan_Status 0 dtype: int64 いくつかのフィールドには値が欠落していることがわかります [8]では: mso.bar(df,color="blue") plt.show() 写真 欠損値は後で埋められます。データ探索 EDA データ探索 EDAカテゴリ変数ローンID [9]では: df.Loan_ID.value_counts(dropna=False) アウト[9]: LP001002 1 LP002328 1 LP002305 1 LP002308 1 LP002314 1 .. LP001692 1 LP001693 1 LP001698 1 LP001699 1 LP002990 1 Name: Loan_ID, Length: 614, dtype: int64 Loan_IDごとにレコードが1つずつあることがわかります。 性別[10]では: df.Gender.value_counts(dropna=False) アウト[10]: Male 489 Female 112 NaN 13 Name: Gender, dtype: int64 [11]では: sns.countplot(x="Gender", data=df, palette="hls") plt.show() 写真 性別ごとの欠損値を処理します。 [12]では: countMale = len(df[df.Gender == 'Male']) # 男性数据countFemale = len(df[df.Gender == 'Female']) # 女性数据countNull = len(df[df.Gender.isnull()]) # 缺失值数量 [13]では: print("Percentage of Male: {:.2f}%".format((countMale / (len(df.Gender)) * 100))) print("Percentage of Female: {:.2f}%".format((countFemale / (len(df.Gender)) * 100))) print("Missing values percentage: {:.2f}%".format((countNull / (len(df.Gender)) * 100))) Percentage of Male: 79.64% Percentage of Female: 18.24% Missing values percentage: 2.12% 既婚[14]では: df.Married.value_counts(dropna=False) アウト[14]: Yes 398 No 213 NaN 3 Name: Married, dtype: int64 [15]では: sns.countplot(x="Married", data=df, palette="Paired") plt.show() 写真 既婚者と未婚者の比較: [16]では: countMarried = len(df[df.Married == 'Yes']) countNotMarried = len(df[df.Married == 'No']) countNull = len(df[df.Married.isnull()]) [17]では: print("Percentage of married: {:.2f}%".format((countMarried / (len(df.Married))*100))) print("Percentage of Not married applicant: {:.2f}%".format((countNotMarried / (len(df.Married))*100))) print("Missing values percentage: {:.2f}%".format((countNull / (len(df.Married))*100))) Percentage of married: 64.82% Percentage of Not married applicant: 34.69% Missing values percentage: 0.49% 教育[18]では: df.Education.value_counts(dropna=False) アウト[18]: Graduate 480 Not Graduate 134 Name: Education, dtype: int64 [19]では: sns.countplot(x="Education", data=df, palette="rocket") plt.show() 写真 異なる教育レベルの人々の比較: [20]では: countGraduate = len(df[df.Education == 'Graduate']) countNotGraduate = len(df[df.Education == 'Not Graduate']) countNull = len(df[df.Education.isnull()]) print("Percentage of graduate applicant: {:.2f}%".format((countGraduate / (len(df.Education))*100))) print("Percentage of Not graduate applicant: {:.2f}%".format((countNotGraduate / (len(df.Education))*100))) print("Missing percentage: {:.2f}%".format((countNull / (len(df.Education))*100))) Percentage of graduate applicant: 78.18% Percentage of Not graduate applicant: 21.82% Missing percentage: 0.00% 自営業[21]では: df.Self_Employed.value_counts(dropna=False) アウト[21]: No 500 Yes 82 NaN 32 Name: Self_Employed, dtype: int64 [22]では: sns.countplot(x="Self_Employed", data=df, palette="crest") plt.show() 写真 従業員が自営業者であるかどうかの比較: [23]では: countNo = len(df[df.Self_Employed == 'No']) countYes = len(df[df.Self_Employed == 'Yes']) countNull = len(df[df.Self_Employed.isnull()]) print("Percentage of Not self employed: {:.2f}%".format((countNo / (len(df.Self_Employed))*100))) print("Percentage of self employed: {:.2f}%".format((countYes / (len(df.Self_Employed))*100))) print("Missing values percentage: {:.2f}%".format((countNull / (len(df.Self_Employed))*100))) Percentage of Not self employed: 81.43% Percentage of self employed: 13.36% Missing values percentage: 5.21% 信用履歴[24]では: df.Credit_History.value_counts(dropna=False) アウト[24]: 1.0 475 0.0 89 NaN 50 Name: Credit_History, dtype: int64 [25]では: sns.countplot(x="Credit_History", data=df, palette="viridis") plt.show() 写真 クレジットカード履歴のある人とない人の比較: [26]では: count1 = len(df[df.Credit_History == 1]) count0 = len(df[df.Credit_History == 0]) countNull = len(df[df.Credit_History.isnull()]) [27]では: print("Percentage of Good credit history: {:.2f}%".format((count1 / (len(df.Credit_History))*100))) print("Percentage of Bad credit history: {:.2f}%".format((count0 / (len(df.Credit_History))*100))) print("Missing values percentage: {:.2f}%".format((countNull / (len(df.Credit_History))*100))) Percentage of Good credit history: 77.36% Percentage of Bad credit history: 14.50% Missing values percentage: 8.14% 物件エリア[28]では: df.Property_Area.value_counts(dropna=False) アウト[28]: Semiurban 233 Urban 202 Rural 179 Name: Property_Area, dtype: int64 [29]では: sns.countplot(x="Property_Area", data=df, palette="cubehelix") plt.show() 写真 地域別の人口の比較: [30]では: countUrban = len(df[df.Property_Area == 'Urban']) countRural = len(df[df.Property_Area == 'Rural']) countSemiurban = len(df[df.Property_Area == 'Semiurban']) countNull = len(df[df.Property_Area.isnull()]) [31]では: print("Percentage of Urban: {:.2f}%".format((countUrban / (len(df.Property_Area))*100))) print("Percentage of Rural: {:.2f}%".format((countRural / (len(df.Property_Area))*100))) print("Percentage of Semiurban: {:.2f}%".format((countSemiurban / (len(df.Property_Area))*100))) print("Missing values percentage: {:.2f}%".format((countNull / (len(df.Property_Area))*100))) Percentage of Urban: 32.90% Percentage of Rural: 29.15% Percentage of Semiurban: 37.95% Missing values percentage: 0.00% このフィールドは3つの異なる値に均等に分散されており、欠損値はありません。 ローン状況[32]では: df.Loan_Status.value_counts(dropna=False) アウト[32]: Y 422 N 192 Name: Loan_Status, dtype: int64 [33]では: sns.countplot(x="Loan_Status", data=df, palette="YlOrBr") plt.show() 写真 ローンを借りる人の割合の比較: [34]では: countY = len(df[df.Loan_Status == 'Y']) countN = len(df[df.Loan_Status == 'N']) countNull = len(df[df.Loan_Status.isnull()]) print("Percentage of Approved: {:.2f}%".format((countY / (len(df.Loan_Status))*100))) print("Percentage of Rejected: {:.2f}%".format((countN / (len(df.Loan_Status))*100))) print("Missing values percentage: {:.2f}%".format((countNull / (len(df.Loan_Status))*100))) Percentage of Approved: 68.73% Percentage of Rejected: 31.27% Missing values percentage: 0.00% 融資額 期間[35]では: df.Loan_Amount_Term.value_counts(dropna=False) アウト[35]: 360.0 512 180.0 44 480.0 15 NaN 14 300.0 13 240.0 4 84.0 4 120.0 3 60.0 2 36.0 2 12.0 1 Name: Loan_Amount_Term, dtype: int64 [36]では: sns.countplot(x="Loan_Amount_Term", data=df, palette="rocket") plt.show() 写真 ローン期間の異なる人々の比較: [37]では: count12 = len(df[df.Loan_Amount_Term == 12.0]) count36 = len(df[df.Loan_Amount_Term == 36.0]) count60 = len(df[df.Loan_Amount_Term == 60.0]) count84 = len(df[df.Loan_Amount_Term == 84.0]) count120 = len(df[df.Loan_Amount_Term == 120.0]) count180 = len(df[df.Loan_Amount_Term == 180.0]) count240 = len(df[df.Loan_Amount_Term == 240.0]) count300 = len(df[df.Loan_Amount_Term == 300.0]) count360 = len(df[df.Loan_Amount_Term == 360.0]) count480 = len(df[df.Loan_Amount_Term == 480.0]) countNull = len(df[df.Loan_Amount_Term.isnull()]) print("Percentage of 12: {:.2f}%".format((count12 / (len(df.Loan_Amount_Term))*100))) print("Percentage of 36: {:.2f}%".format((count36 / (len(df.Loan_Amount_Term))*100))) print("Percentage of 60: {:.2f}%".format((count60 / (len(df.Loan_Amount_Term))*100))) print("Percentage of 84: {:.2f}%".format((count84 / (len(df.Loan_Amount_Term))*100))) print("Percentage of 120: {:.2f}%".format((count120 / (len(df.Loan_Amount_Term))*100))) print("Percentage of 180: {:.2f}%".format((count180 / (len(df.Loan_Amount_Term))*100))) print("Percentage of 240: {:.2f}%".format((count240 / (len(df.Loan_Amount_Term))*100))) print("Percentage of 300: {:.2f}%".format((count300 / (len(df.Loan_Amount_Term))*100))) print("Percentage of 360: {:.2f}%".format((count360 / (len(df.Loan_Amount_Term))*100))) print("Percentage of 480: {:.2f}%".format((count480 / (len(df.Loan_Amount_Term))*100))) print("Missing values percentage: {:.2f}%".format((countNull / (len(df.Loan_Amount_Term))*100))) Percentage of 12: 0.16% Percentage of 36: 0.33% Percentage of 60: 0.33% Percentage of 84: 0.65% Percentage of 120: 0.49% Percentage of 180: 7.17% Percentage of 240: 0.65% Percentage of 300: 2.12% Percentage of 360: 83.39% Percentage of 480: 2.44% Missing values percentage: 2.28% 数値変数記述統計[38]では: df.select_dtypes(exclude=["object"]).columns アウト[38]: Index(['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount', 'Loan_Amount_Term', 'Credit_History'], dtype='object') [39]では: df[['ApplicantIncome','CoapplicantIncome','LoanAmount']].describe() アウト[39]:
| 申請者の収入 | 共同申請者の収入 | ローン金額 | カウント | 614.000000 | 614.000000 | 592.000000 | 平均 | 5403.459283 | 1621.245798 | 146.412162 | 標準 | 6109.041673 | 2926.248369 | 85.587325 | 分 | 150.000000 | 0.000000 | 9.000000 | 25% | 2877.500000 | 0.000000 | 100.000000 | 50% | 3812.500000 | 1188.500000 | 128.000000 | 75% | 5795.000000 | 2297.250000 | 168.000000 | 最大 | 81000.000000 | 41667.000000 | 700.000000 |
フィールドヒストグラム分布[40]では: sns.set(style="darkgrid") fig, axs = plt.subplots(2, 2, figsize=(10, 8)) sns.histplot(data=df, x="ApplicantIncome", kde=True, ax=axs[0, 0], color='green') sns.histplot(data=df, x="CoapplicantIncome", kde=True, ax=axs[0, 1], color='skyblue') sns.histplot(data=df, x="LoanAmount", kde=True, ax=axs[1, 0], color='orange'); 写真 これら 3 つのフィールドには一定の歪みが見られ、後でデータ変換処理が実行されることがわかります。 フィールドバイオリンプロット分布[41]では: sns.set(style="darkgrid") fig, axs1 = plt.subplots(2, 2, figsize=(10, 10)) sns.violinplot(data=df, y="ApplicantIncome", ax=axs1[0, 0], color='green') sns.violinplot(data=df, y="CoapplicantIncome", ax=axs1[0, 1], color='skyblue') sns.violinplot(data=df, y="LoanAmount", ax=axs1[1, 0], color='orange'); 写真 ペアワイズ特徴分布2つのカテゴリ変数分類された変数は、主に分布を表示するための統計分析に基づいています。 [42]では: pd.crosstab(df.Gender,df.Married).plot(kind="bar", stacked=True, figsize=(5,5), color=['#f64f59','#12c2e9']) plt.title('Gender vs Married') plt.xlabel('Gender') plt.ylabel('Frequency') plt.xticks(rotatinotallow=0) plt.show() 写真 良いクレジットカード履歴と悪いクレジットカード履歴の比較: [43]では: pd.crosstab(df.Self_Employed,df.Credit_History).plot(kind="bar", stacked=True, figsize=(5,5), color=['#544a7d','#ffd452']) plt.title('Self Employed vs Credit History') plt.xlabel('Self Employed') plt.ylabel('Frequency') plt.legend(["Bad Credit", "Good Credit"]) plt.xticks(rotatinotallow=0) plt.show() 写真 異なる地域の人々がローンを利用するかどうかの比較: [44]では: pd.crosstab(df.Property_Area,df.Loan_Status).plot(kind="bar", stacked=True, figsize=(5,5), color=['#333333','#dd1818']) plt.title('Property Area vs Loan Status') plt.xlabel('Property Area') plt.ylabel('Frequency') plt.xticks(rotatinotallow=0) plt.show() 写真 カテゴリ変数 + 数値変数[45]では: sns.boxplot(x="Loan_Status", y="ApplicantIncome", data=df, palette="mako"); 写真 sns.boxplot(x="CoapplicantIncome", y="Loan_Status", data=df, palette="rocket");
写真 sns.boxplot(x="Loan_Status", y="LoanAmount", data=df, palette="YlOrBr");
写真 2つの数値変数[48]では: df.plot(x='ApplicantIncome', y='CoapplicantIncome', style='o') plt.title('Applicant Income - Co Applicant Income') plt.xlabel('ApplicantIncome') plt.ylabel('CoapplicantIncome') plt.show() 写真 相関計算: [49]では: print('Pearson correlation:', df['ApplicantIncome'].corr(df['CoapplicantIncome'])) print('T Test and P value: \n', stats.ttest_ind(df['ApplicantIncome'], df['CoapplicantIncome'])) Pearson correlation: -0.11660458122889966 T Test and P value: Ttest_indResult(statistic=13.835753259915661, pvalue=1.4609839484240346e-40) 相関分析[50]では: plt.figure(figsize=(10,7)) sns.heatmap(df.corr(), annot=True, cmap='inferno') plt.show() 写真
特徴エンジニアリング(データ前処理)不要な変数を削除する[51]では: df.drop("Loan_ID",axis=1, inplace=True) データ補完[52]では: df.isnull().sum() アウト[52]: Gender 13 Married 3 Dependents 15 Education 0 Self_Employed 32 ApplicantIncome 0 CoapplicantIncome 0 LoanAmount 22 Loan_Amount_Term 14 Credit_History 50 Property_Area 0 Loan_Status 0 dtype: int64 [53]では: df.dtypes アウト[53]: Gender object Married object Dependents object Education object Self_Employed object ApplicantIncome int64 CoapplicantIncome float64 LoanAmount float64 Loan_Amount_Term float64 Credit_History float64 Property_Area object Loan_Status object dtype: object [54]では: df["Credit_History"].value_counts() アウト[54]: 1.0 475 0.0 89 Name: Credit_History, dtype: int64 [55]では: df["Loan_Amount_Term"].value_counts() アウト[55]: 360.0 512 180.0 44 480.0 15 300.0 13 240.0 4 84.0 4 120.0 3 60.0 2 36.0 2 12.0 1 Name: Loan_Amount_Term, dtype: int64 カテゴリ変数カテゴリ変数の欠損値については、モードを使用して入力します。 [56]では: df['Gender'].fillna(df['Gender'].mode()[0],inplace=True) df['Married'].fillna(df['Married'].mode()[0],inplace=True) df['Dependents'].fillna(df['Dependents'].mode()[0],inplace=True) df['Self_Employed'].fillna(df['Self_Employed'].mode()[0],inplace=True) # 信用卡历史记录0-bad credit 1-good credit history df['Credit_History'].fillna(df['Credit_History'].mode()[0],inplace=True) # 还款周期(天) df['Loan_Amount_Term'].fillna(df['Loan_Amount_Term'].mode()[0],inplace=True) 数値変数数値変数の欠損値は平均値で埋められます。 [57]では: df['LoanAmount'].fillna(df['LoanAmount'].mean(),inplace=True) # 贷款金额 ワンホットエンコーディング[58]では: df = pd.get_dummies(df) df.head() 処理後のすべてのフィールド情報: [59]では: df.columns アウト[59]: Index(['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount', 'Loan_Amount_Term', 'Credit_History', 'Gender_Female', 'Gender_Male', 'Married_No', 'Married_Yes', 'Dependents_0', 'Dependents_1', 'Dependents_2', 'Dependents_3+', 'Education_Graduate', 'Education_Not Graduate', 'Self_Employed_No', 'Self_Employed_Yes', 'Property_Area_Rural', 'Property_Area_Semiurban', 'Property_Area_Urban', 'Loan_Status_N', 'Loan_Status_Y'], dtype='object') [60]では: # 删除部分字段df = df.drop(['Gender_Female', 'Married_No', 'Education_Not Graduate','Self_Employed_No', 'Loan_Status_N'], axis = 1) [61]では: # 字段重命名new = {'Gender_Male': 'Gender', 'Married_Yes': 'Married', 'Education_Graduate': 'Education', 'Self_Employed_Yes': 'Self_Employed', 'Loan_Status_Y': 'Loan_Status'} df.rename(columns=new, inplace=True) 外れ値を削除する上位四分位数と下位四分位数を重要なポイントとしてとらえます。 [62]では: Q1 = df.quantile(0.25) Q3 = df.quantile(0.75) IQR = Q3 - Q1 df = df[~((df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))).any(axis=1)] 偏った分布の処理データを二乗してデータ変換を実行します: np.sqrt [63]では: df.ApplicantIncome = np.sqrt(df.ApplicantIncome) df.CoapplicantIncome = np.sqrt(df.CoapplicantIncome) df.LoanAmount = np.sqrt(df.LoanAmount) データの分布を再度確認します。 [64]では: sns.set(style="darkgrid") fig, axs = plt.subplots(2, 2, figsize=(10, 8)) sns.histplot(data=df, x="ApplicantIncome", kde=True, ax=axs[0, 0], color='green') sns.histplot(data=df, x="CoapplicantIncome", kde=True, ax=axs[0, 1], color='skyblue') sns.histplot(data=df, x="LoanAmount", kde=True, ax=axs[1, 0], color='orange'); 写真 モデリング機能の分離[65]では: X = df.drop(["Loan_Status"], axis=1) y = df["Loan_Status"] SMOTE アップサンプリング[66]では: pd.value_counts(y) # 采样前 アウト[66]: 1 112 0 24 Name: Loan_Status, dtype: int64 [67]では: X, y = SMOTE().fit_resample(X, y) [68]では: pd.value_counts(y) # 采样后 アウト[68]: 1 112 0 112 Name: Loan_Status, dtype: int64 [69]では: sns.set_theme(style="darkgrid") sns.countplot(y=y, data=df, palette="coolwarm") plt.ylabel('Loan Status') plt.xlabel('Total') plt.show() 写真 データの正規化[70]では: mm = MinMaxScaler() X = mm.fit_transform(X) トレーニングセットとテストセットに分割[71]では: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) モデル1 - ロジスティック回帰[72]では: pd.value_counts(y_train) アウト[72]: 1 90 0 89 Name: Loan_Status, dtype: int64 [73]では: pd.value_counts(y_test) アウト[73]: 0 23 1 22 Name: Loan_Status, dtype: int64 [74]では: LRclassifier = LogisticRegression(solver='saga', max_iter=500, random_state=1) LRclassifier.fit(X_train, y_train) # 模型预测y_pred = LRclassifier.predict(X_test) [75]では: print(classification_report(y_test, y_pred)) # 分类结果报告precision recall f1-score support 0 0.86 0.83 0.84 23 1 0.83 0.86 0.84 22 accuracy 0.84 45 macro avg 0.84 0.84 0.84 45 weighted avg 0.85 0.84 0.84 45 [76]では: print(confusion_matrix(y_test, y_pred)) # 混淆矩阵[[19 4] [ 3 19]] [77]では: LRAcc = accuracy_score(y_pred,y_test) # 准确率print('LR accuracy: {:.2f}%'.format(LRAcc * 100)) LR accuracy: 84.44% モデル 2 - K 近傍法 (KNN)新しいバージョンのエラー解決方法については、https://blog.csdn.net/weixin_51723388/article/details/128577782 を参照してください。 KNeighborsClassifier(n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None) を使用する場合、stats.mode は weights='uniform' の場合にのみ使用されます。このうち、均一とは重みが等しいこと、つまり近傍内のすべての点の重みが等しく、モードを取ることと同等であることを意味します。 weights='distance' に変更できます
[78]では: score_list = [] for i in range(1,21): knn = KNeighborsClassifier(n_neighbors = i,weights='distance') knn.fit(X_train, y_train) score_list.append(knn.score(X_test, y_test)) # 测试集预测得分plt.plot(range(1,21), score_list) plt.xticks(np.arange(1,21,1)) plt.xlabel("K value") plt.ylabel("Score") plt.show() KNAcc = max(score_list) print("KNN best accuracy: {:.2f}%".format(KNAcc*100)) KNN best accuracy: 86.67% 写真 モデル 3 - サポート ベクター マシン (SVM) [79]では: svc = SVC(kernel='rbf', max_iter=500) svc.fit(X_train, y_train) y_pred = svc.predict(X_test) print(classification_report(y_test, y_pred)) print(confusion_matrix(y_test, y_pred)) precision recall f1-score support 0 0.95 0.78 0.86 23 1 0.81 0.95 0.88 22 accuracy 0.87 45 macro avg 0.88 0.87 0.87 45 weighted avg 0.88 0.87 0.87 45 [[18 5] [ 1 21]] [80]では: SVCAcc = accuracy_score(y_pred,y_test) print('SVC accuracy: {:.2f}%'.format(SVCAcc*100)) SVC accuracy: 86.67% モデル 4 - ガウス ナイーブ ベイズ ガウス NB [81]では: NBclassifier2 = GaussianNB() NBclassifier2.fit(X_train, y_train) y_pred = NBclassifier2.predict(X_test) print(classification_report(y_test, y_pred)) print(confusion_matrix(y_test, y_pred)) precision recall f1-score support 0 0.68 0.83 0.75 23 1 0.76 0.59 0.67 22 accuracy 0.71 45 macro avg 0.72 0.71 0.71 45 weighted avg 0.72 0.71 0.71 45 [[19 4] [ 9 13]] [82]では: GNBAcc = accuracy_score(y_pred,y_test) print('Gaussian Naive Bayes accuracy: {:.2f}%'.format(GNBAcc*100)) Gaussian Naive Bayes accuracy: 71.11% モデル 5 - 決定木[83]では: scoreListDT = [] for i in range(2,21): DTclassifier = DecisionTreeClassifier(max_leaf_nodes=i) DTclassifier.fit(X_train, y_train) scoreListDT.append(DTclassifier.score(X_test, y_test)) plt.plot(range(2,21), scoreListDT) plt.xticks(np.arange(2,21,1)) plt.xlabel("Leaf") plt.ylabel("Score") plt.show() DTAcc = max(scoreListDT) print("Decision Tree Accuracy: {:.2f}%".format(DTAcc*100)) Decision Tree Accuracy: 84.44% 写真 モデル 6 - ランダム フォレスト[84]では: scoreListRF = [] for i in range(2,25): RFclassifier = RandomForestClassifier(n_estimators = 1000, random_state = 1, max_leaf_nodes=i) RFclassifier.fit(X_train, y_train) scoreListRF.append(RFclassifier.score(X_test, y_test)) plt.plot(range(2,25), scoreListRF) plt.xticks(np.arange(2,25,1)) plt.xlabel("RF Value") plt.ylabel("Score") plt.show() RFAcc = max(scoreListRF) print("Random Forest Accuracy: {:.2f}%".format(RFAcc*100)) Random Forest Accuracy: 91.11% 写真 モデル 7 - 勾配ブースティング[85]では: # 设置参数params={'n_estimators':[100,200,300,400,500], 'max_depth':[1,2,3,4,5], 'subsample':[0.5,1], 'max_leaf_nodes':[2,5,10,20,30,40,50]} [86]では: # 基于随机搜索查找参数组合GB = RandomizedSearchCV(GradientBoostingClassifier(), params, cv=20) GB.fit(X_train, y_train) アウト[86]: RandomizedSearchCV(cv=20, estimator=GradientBoostingClassifier(), param_distributinotallow={'max_depth': [1, 2, 3, 4, 5], 'max_leaf_nodes': [2, 5, 10, 20, 30, 40, 50], 'n_estimators': [100, 200, 300, 400, 500], 'subsample': [0.5, 1]}) [87]では: print(GB.best_estimator_) print(GB.best_score_) GradientBoostingClassifier(max_depth=4, max_leaf_nodes=10, n_estimators=500, subsample=1) 0.7993055555555555 [88]では: print(GB.best_params_) # 最佳参数组合{'subsample': 1, 'n_estimators': 500, 'max_leaf_nodes': 10, 'max_depth': 4} [89]では: GB.best_params_["subsample"] アウト[89]: 1 見つかったパラメータに基づいて再モデル化します。 [90]では: gbc = GradientBoostingClassifier(subsample=GB.best_params_["subsample"], n_estimators=GB.best_params_["n_estimators"], max_depth=GB.best_params_["max_depth"], max_leaf_nodes=GB.best_params_["max_leaf_nodes"], ) gbc.fit(X_train, y_train) y_pred = gbc.predict(X_test) print(classification_report(y_test, y_pred)) print(confusion_matrix(y_test, y_pred)) precision recall f1-score support 0 0.78 0.91 0.84 23 1 0.89 0.73 0.80 22 accuracy 0.82 45 macro avg 0.83 0.82 0.82 45 weighted avg 0.83 0.82 0.82 45 [[21 2] [ 6 16]] [91]では: GBAcc = accuracy_score(y_pred,y_test) print('Gradient Boosting accuracy: {:.2f}%'.format(GBAcc*100)) Gradient Boosting accuracy: 82.22% モデル比較[92]では: models = pd.DataFrame({'Model': ['Logistic Regression', 'K Neighbors', 'Support Vector Machine', 'Gaussian NB', 'Decision Tree', 'Random Forest', 'Gradient Boost'], 'Accuracy': [LRAcc*100, KNAcc*100, SVCAcc*100,GNBAcc*100, DTAcc*100, RFAcc*100, GBAcc*100]}) models.sort_values(by='Accuracy', ascending=False) アウト[92]:
| モデル | 正確さ | 5 | ランダムフォレスト | 91.111111 | 1 | Kネイバーズ | 86.666667 | 2 | サポートベクターマシン | 86.666667 | 0 | ロジスティック回帰 | 84.444444 | 4 | 決定木 | 84.444444 | 6 | グラデーションブースト | 82.222222 | 3 | ガウスNB | 71.111111 |
|