Llama 2を破り、GPT-3.5と競合するStability AIの新モデルがオープンソースの大規模モデルのリストでトップに

Llama 2を破り、GPT-3.5と競合するStability AIの新モデルがオープンソースの大規模モデルのリストでトップに

「たった30分の昼休みを取っただけで、私たちの分野はまた変わってしまったのか?」最新のオープンソースの大規模モデルランキングを見て、AI分野の起業家が自問自答した。

写真

リーダーボードリンク: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

上の写真の赤いボックス内の「新参者」は、Stability AI と CarperAI ラボの 2 つの大型モデル、FreeWilly 1 と FreeWilly 2 です。たった今、3日前にMetaがリリースしたLlama-2-70b-hfを抜いて、HuggingFaceのOpen LLMランキングリストでトップに躍り出ました。

さらに驚くべきことは、FreeWilly 2 が ChatGPT (GPT-3.5) を多くのベンチマークで上回り、GPT-3.5 と真に競合できる最初のオープンソースの大規模モデルになったことです。これは Llama 2 が達成できなかったことです。

写真

FreeWilly 1 は、オリジナルの LLaMA 65B ベース モデルに基づいて構築されており、標準 Alpaca 形式の新しい合成データセットを使用して、慎重に監督され微調整 (SFT) されています。 FreeWilly2 は、最新の LLaMA 2 70B ベース モデルに基づいて構築されています。

Stability AI が公開したブログから、2 つの新しいモデルの詳細を確認できます。

データソース

FreeWilly モデルのトレーニング方法は、Microsoft が論文「Orca: GPT-4 の複雑な説明トレースからの漸進的学習」で先駆的に開発した方法から直接ヒントを得ています。 FreeWilly のデータ生成プロセスは似ていますが、データ ソースに関しては両者の間に違いがあります。

FreeWilly データセットには 600,000 のデータ ポイント (元の Orca 論文で使用されたデータセットの約 10%) が含まれており、言語モデル生成のヒントとして Enrico Shippole が作成した次の高品質の指示データセットを使用して生成されました。

  • COT サブミックス オリジナル
  • NIV2 サブミックス オリジナル
  • FLAN 2021 サブミックス オリジナル
  • T0 サブミックス オリジナル

このアプローチを使用して、研究者はより単純な LLM モデルを使用して 500,000 個の例を生成し、さらにより複雑な LLM モデルを使用して 100,000 個の例を生成しました。公平な比較を確実にするために、これらのデータセットを慎重に選別し、評価ベンチマークから例を削除しました。オリジナルの Orca 論文と比べてトレーニング サンプルの数が 10 分の 1 しかないにもかかわらず (これにより、オリジナルの論文と比較してモデルのトレーニングにかかる​​コストと炭素排出量が大幅に削減されます)、結果として得られた FreeWilly モデルはさまざまなベンチマークで優れたパフォーマンスを発揮し、合成データセットを使用したアプローチの有効性を検証しました。

パフォーマンスデータ

これらのモデルを社内で評価するために、EleutherAI の lm-eval-harness ベンチマークを使用し、AGIEval を追加しました。

非営利の人工知能研究ラボ EleutherAI とその基盤となる HuggingFace Open LLM リーダーボードによって作成された lm-eval-harness ベンチマークは、Hugging Face コンピューティング クラスターのアイドル サイクル中に評価を実行し、結果をデータセットに保存してから、オンライン リーダーボード スペースに表示します。

AGIEval は Microsoft によって作成され、数学コンテストや司法試験などの「人間中心」の標準テストにおける基本モデルのパフォーマンスを評価するために特別に設計されています。

どちらの FreeWilly モデルも、複雑な推論、言語の微妙なニュアンスの理解、法律や数学の問題などの専門分野に関わる複雑な質問への回答など、多くの分野で非常に優れたパフォーマンスを発揮しました。

lm-eval-harness ベンチマークにおける 2 つのモデルの評価結果は次のとおりです (これらの FreeWilly テスト結果は Stability AI の研究者によって評価されました)。

写真

AGIEval ベンチマークにおける 2 つのパフォーマンスは次のとおりです (すべて 0 ショット)。

写真

さらに、GPT4ALL ベンチマーク (すべて 0 ショット) でも 2 つのモデルをテストしました。

写真

全体的に、これら 2 つのモデルのパフォーマンスは優れており、ChatGPT などのトップ AI モデルとの差がさらに縮まっています。モデルを入手したい学生は、次のリンクをクリックしてください。

フリーウィリー 1: https://huggingface.co/stabilityai/FreeWilly1-Delta-SafeTensor

フリーウィリー 2: https://huggingface.co/stabilityai/FreeWilly2

各方面の反応から判断すると、FreeWilly モデルの登場は、あまりにも急な登場だったため、皆に少々の衝撃を与えたようです。結局のところ、Llama 2 は発売されてから 3 日しか経っておらず、ランキングのトップにも入っていません。ある研究者は、最近手術を受け、1週間ニュースを見ていなかったが、まるで1年間昏睡状態にあったかのような気分だったと語った。つまり、これは「瞬きしない」期間です。

写真

ただし、両方のモデルはオープン アクセスですが、Llama 2 とは異なり、非商用ライセンスの下でリリースされており、研究目的でのみ使用できることに注意することが重要です。

写真

しかし、この行為はネットユーザーの間で疑問を引き起こしている。

写真

これに対し、Stability AIの研究者らは、この状況(研究目的のみ)は一時的なものであり、将来的にはFreeWillyもLlama 2のように商用利用が許可される予定であると述べた。

写真

さらに、テストで使用されたベンチマークに疑問を呈する人もいます。

写真

これも現時点ではかなり難しい問題です。以前、HuggingFaceのランキングでファルコンモデルがラマを圧倒した事件が議論を呼んだ。その後、事件は完全に覆され、ラマはファルコンに圧倒されていないことが証明された。HuggingFaceはこのためにランキングコードも書き換えた。今日では大規模なモデルが多数登場しており、これらのモデルを効果的に評価する方法は依然として議論する価値のある問題です。したがって、ランキング上位のモデルについてはより慎重になり、さらなる評価結果が出るのを待つ必要があります。

<<:  12 のモダリティ、1 つの学習フレームワーク、Meta-Transformer がバックボーン ネットワークの統合を実現

>>: 

ブログ    
ブログ    

推薦する

人工知能はクラウドストレージとデータサービスの革新を推進する

[[358649]]従来のストレージとデータ構造が、クラウドネイティブ アプリケーションに必要な移植...

MITの新しいAI研究:セーターが編めなくても問題ない、AIにやらせればいい

人工知能といえば、最先端のクールなアプリケーションのほかに、この話題になると「偽物」という言葉が思い...

...

強化学習の実際の応用例 10 選

強化学習では、報酬と罰のメカニズムを使用してエージェントをトレーニングします。エージェントは正しい行...

馬化騰と李延紅の対談:基礎技術は巨大産業の変革の基盤

11月8日、烏鎮で開催された世界インターネット大会で、馬化騰氏と李ロビン氏が首脳対談を行った。2人の...

...

...

...

成都初の無人地下鉄が運行開始。列車の前方からの眺めはまるで時空を旅しているかのようだ

毎日地下鉄に乗るとき、トンネルを高速で走る列車の前方風景を見たことがありますか?11月13日、成都初...

DrivingDiffusion: 最初のサラウンドワールド モデル: BEV データとシミュレーションの新しいアイデア!

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

5分でトップ10の機械学習アルゴリズムを学ぶ

[[317656]]機械学習は業界にとって革新的で重要な分野です。機械学習プログラムに選択するアルゴ...

...

機械学習と脳科学が次の10年間の教育発展をリードする

[51CTO.comよりオリジナル記事] 昨今人気の技術として、産業界における人工知能の応用が徐々に...

ソフトウェアがハードウェアを飲み込むAI時代において、チップがアルゴリズムの進化に追いつけない場合、私たちはどうすればよいのでしょうか?

AI時代の陰の立役者として、チップ業界は徐々にかつ継続的な変化を遂げています。 2008 年以降、...

データ サイエンスの初心者の場合は、まずはここにいくつかのアルゴリズムを紹介します。

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)か...