6月20日のニュースによると、人工知能分野の専門家は、AIが生成したコンテンツがオンラインに投稿されるケースが増えるにつれ、このデータでトレーニングされたAIは将来的に混乱に陥るだろうと予測している。 英国とカナダの科学者グループは5月に、複数世代のAIが互いに訓練すると何が起こるかを理解しようとする論文を発表した。ある例では、元のソース資料は中世の建築に関するものであったのに、AI システムは 9 回の反復を経て野ウサギについておしゃべりできるようになりました。 データは「数回の反復の後、AIが出力するテキストはゴミになり、画像は理解不能になる」ことを示したと、ケンブリッジ大学の教授で研究の著者の一人であるロス・アンダーソン氏は、調査結果についてのブログ投稿に記した。論文はまだ査読されていないが、科学者たちはこの現象を「モデルの崩壊」と呼んでいる。 チャットボット ChatGPT の背後にある大規模言語モデル (LLM) では通常、トレーニングのためにインターネットから大量のデータをクロールする必要があり、そのほとんどは人間によって生成されます。しかし、人々がこれらのツールを利用する機会が増えるにつれ、AI が生成したコンテンツがオンライン データ プールに追加され、将来の LLM がそこから学習することになります。 科学者らは、AIが生成したコンテンツを使用してAIシステムを繰り返しトレーニングすると、エラーや無意味な例が蓄積し続け、後続のAIが事実とフィクションを区別できなくなると述べています。彼らは、AIが「自らの信念を強化することで、真実だと信じていることを歪め始める」のではないかと懸念している。 アンダーソンは、モーツァルトともう一人の音楽家、アントニオ・サリエリの作品を使ってこの疑問を説明しています。 「モーツァルトで音楽モデルをトレーニングすると、余計な装飾を省いたモーツァルトに似た出力が得られると期待できます。これを『サリエリ』と呼ぶことができます。次に、『サリエリ』を使用して次世代の AI システムをトレーニングし、このプロセスを何度も繰り返します。第 5 世代や第 6 世代のモデルはどのようなものになるでしょうか」と彼は書いています。 問題は、AIが以前に生成したコンテンツで訓練された後の確率の認識にあると、オックスフォード大学の教授でこの研究の主執筆者であるイリア・シュマイロフ氏は述べた。起こりそうもない出来事が出力に反映される可能性はますます低くなり、次世代の AI (この出力でトレーニングされた) が理解できる可能性は狭まります。 論文で示された一例では、中世の建築に関する人間が作成したテキストが AI 言語モデルに入力され、モデルの出力が次世代の AI のトレーニングに使用されました。原文では、競合する建築理論を巧みに扱い、このサイクルを数回繰り返しました。 9 回目の反復までに、テキストは意味のない意味不明な文字になってしまいました。そこにはこう書かれている。「この建物には、黒、白、青、赤、黄色の野ウサギが世界最大数生息しています。」 アンダーソン氏は「モデルの崩壊」を大規模な汚染に例え、「私たちが海をプラスチックで、大気を二酸化炭素で満たしたように、インターネットをナンセンスで満たそうとしている」と書いている。 AI によって生成されたコンテンツはすでに大規模にオンライン上に登場しています。 5月、オンライン誤情報監視団体ニュースガードは、完全に人工知能によってコンテンツを作成していると思われる49のニュースウェブサイトを発見したと警告した。 マーケティングおよびPR代理店は、コピーライティングをチャットボットにアウトソーシングするケースが増えており、人間のクリエイターの仕事を奪っていると報じられている。しかし、シュマイロフ氏とアンダーソン氏の研究結果に基づくと、AIに負けたくないと思っている人間のクリエイターは、まだシャンパンを開けるべきではない。 シュマイロフ氏は、人工的に生成されたデータはAIのトレーニングに絶対に必要なわけではないが、私たちの言語は多くの自然な変化、エラー、予測できない結果を生み出すため、役に立つと述べた。 「だから、人間は間違いなく役立っている」と彼は言った。 「同時に、これは人工知能を訓練する際に人間のデータに対する需要がそれほど大きくないことも示しています。」 |
<<: わずか数ステップでデバイス上で Alpaca-LoRA を実行するにはどうすればよいでしょうか?
>>: AI生成コンテンツの隠れた危険性:AIがAIを学習するだけでは、インターネットは意味のないコンテンツで満たされる
インターネット時代では、テクノロジーの発展により、私たちの生活で利用できる手段が大幅に強化されました...
エッジと極端エッジの間でこれがどのように展開するか、また無線アクセス ネットワークにどのような階層が...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
[[426794]]この記事はWeChatの公開アカウント「3分でフロントエンドを学ぶ」から転載した...
2020年は紆余曲折の多い年であり、ドローン開発にとっては革新と変化の年です。今年、我が国のドロー...
ほとんどのソフトウェア アプリケーション開発と同様に、開発者は複数の言語を使用して AI プロジェク...
編纂者:ヤン・ジェン制作:51CTO テクノロジースタック(WeChat ID:blog)次世代のス...
中国建設銀行の田国利会長は、「金融テクノロジーによってもたらされた包括的金融の伝統的なモデルの破壊的...
現在、外国の科学技術チームがAI技術を利用して、唯一の子供を亡くした母親の長年の願いを叶えた。彼らは...
顔認識技術は国民の自由に深刻な脅威を与えるほど強力になっている。それにもかかわらず、業界は繁栄し続け...
人工知能は、テクノロジーやビジネスの世界で広く議論されている人気のテクノロジーの 1 つです。 さま...
DAMOアカデミーは9月18日、2020年雲奇大会において、音声AI技術の最新のブレークスルーを発表...
Google は再びロボットの製造を開始する予定です。 。 。このニュースを伝えたとき、私は Go...
インターネット時代の恩恵が徐々に薄れていくにつれ、プレイヤーは次の発展のトレンドを求めて模索と実践を...