MySQL インデックスのデータ構造とアルゴリズム: インデックスの実装

MySQL インデックスのデータ構造とアルゴリズム: インデックスの実装

MyISAM インデックスの実装

MyISAM エンジンはインデックス構造として B+Tree を使用し、リーフ ノードのデータ フィールドにデータ レコードのアドレスを格納します。次の図は、MyISAM インデックスの概略図です。

図8

ここでは、テーブルに合計 3 つの列があると仮定します。Col1 が主キーであると仮定すると、図 8 は MyISAM テーブルのプライマリ インデックス (主キー) の図になります。 MyISAM インデックス ファイルには、データ レコードのアドレスのみが保存されていることがわかります。 MyISAM では、プライマリ インデックスとセカンダリ インデックス (セカンダリ キー) の間に構造上の違いはありませんが、プライマリ インデックスではキーが一意である必要があるのに対し、セカンダリ インデックス キーは繰り返すことができます。 Col2 にセカンダリ インデックスを作成すると、このインデックスの構造は次のようになります。

図9

これも B+ ツリーであり、データ フィールドにはデータ レコードのアドレスが格納されます。したがって、 MyISAM のインデックス検索アルゴリズムは、まず B+Tree 検索アルゴリズムに従ってインデックスを検索します。指定されたキーが存在する場合は、そのデータ フィールドの値が取り出され、次にデータ フィールドの値をアドレスとして使用して対応するデータ レコードが読み取られます。

MyISAM インデックス方式は「非クラスター化」とも呼ばれ、InnoDB のクラスター化インデックスと区別するためにこのように呼ばれています。

#p#

InnoDB インデックスの実装

InnoDB もインデックス構造として B+Tree を使用しますが、その具体的な実装は MyISAM とはまったく異なります。

最初の大きな違いは、InnoDB のデータ ファイル自体がインデックス ファイルであることです。上記から、MyISAM インデックス ファイルとデータ ファイルは別々であり、インデックス ファイルにはデータ レコードのアドレスのみが保存されることがわかります。 InnoDB では、テーブル データ ファイル自体が B+ ツリーとして編成されたインデックス構造であり、このツリーのリーフ ノード データ フィールドに完全なデータ レコードが格納されます。このインデックスのキーはデータ テーブルの主キーであるため、InnoDB テーブル データ ファイル自体が主インデックスになります。

図10

図 10 は、InnoDB プライマリ インデックス (データ ファイルでもある) の概略図です。リーフ ノードには完全なデータ レコードが含まれていることがわかります。このタイプのインデックスはクラスター化インデックスと呼ばれます。 InnoDB のデータ ファイル自体は主キーによってクラスター化されているため、InnoDB ではテーブルに主キーが必要です (MyISAM には主キーがない場合があります)。明示的に指定されていない場合、MySQL システムはデータ レコードを一意に識別できる列を主キーとして自動的に選択します。そのような列が存在しない場合、MySQL は InnoDB テーブルの暗黙的なフィールドを主キーとして自動的に生成します。このフィールドは 6 バイト長で、長整数型です。

MyISAM インデックスとの 2 番目の違いは、InnoDB 補助インデックス データ フィールドに、アドレスではなく、対応するレコードの主キーの値が格納されることです。つまり、InnoDB のすべてのセカンダリ インデックスは、データ フィールドとしてプライマリ キーを参照します。たとえば、図 11 は Col3 に定義された補助インデックスを示しています。

図11

ここでは、英語文字の ASCII コードを比較基準として使用します。クラスター化インデックスの実装により、主キーによる検索は非常に効率的になりますが、補助インデックス検索には 2 つのインデックス検索が必要です。最初に補助インデックスを検索して主キーを取得し、次に主キーを使用して主インデックスからレコードを取得します。

さまざまなストレージ エンジンのインデックス実装方法を理解することは、インデックスを正しく使用して最適化するのに非常に役立ちます。たとえば、InnoDB のインデックス実装を理解すれば、長すぎるフィールドを主キーとして使用することが推奨されない理由を簡単に理解できます。これは、すべてのセカンダリ インデックスがプライマリ インデックスを参照し、プライマリ インデックスが長すぎるとセカンダリ インデックスが大きくなりすぎるためです。別の例として、InnoDB データ ファイル自体が B+Tree であるため、InnoDB の主キーとして非単調フィールドを使用することはお勧めできません。非単調な主キーでは、B+Tree の特性を維持するために、新しいレコードを挿入するときにデータ ファイルが頻繁に分割および調整されるため、非常に非効率的です。自動増分フィールドを主キーとして使用するのは良い選択です。

次の章では、これらのインデックス関連の最適化戦略について詳しく説明します。

オリジナルリンク: http://www.cnblogs.com/leoo2sk/archive/2011/07/10/mysql-index.html

【編集者のおすすめ】

  1. MySQL でインデックス組織構造を作成し最適化するためのアイデア
  2. Weibo: データベースをどのように最適化しますか?
  3. MySQL のヒント: 関連パラメータによる制限の最適化
  4. MySQL データベースの最適化 (パート 2) MySQL データベースの高可用性アーキテクチャ ソリューション
  5. MySQL データベースの最適化 (パート 1) 単一マシンの MySQL データベースの最適化

<<:  パフォーマンス最適化技術: アルゴリズム

>>:  MySQL インデックスの背後にあるデータ構造とアルゴリズムの基礎

ブログ    
ブログ    

推薦する

ChatGPT の新機能がオンラインになりました。これでビデオ編集が簡単になりますか?

最近、OpenAIが数か月間隠していた大きな動きがついに公開されました。それが「コードインタープリタ...

アリインデックスシステムの設計と実践

今回の講演者は、アントグループの王高航氏です。講演のテーマは、アントインデックスシステムの設計と実践...

橋梁点検におけるUAV技術の応用

これらの技術の応用により、長期的にはドローンが開発され、橋梁点検の分野で応用されるでしょう。では、橋...

フロスト&サリバンは、倉庫管理用の自律配送ロボットの市場が2025年までに272億ドルに達すると予測している。

コロナウイルスのパンデミックが業界に与える影響の程度は地域や業種によって異なると報告書は述べている合...

Testin Cloud Testing: テクノロジーを活用して企業の飛躍を支援

急速に発展するデジタル時代において、ビジネスの成功にとって高品質で効率的なテスト サービスが重要であ...

2019年に解決すべき11のAI倫理的ジレンマ

ビッグデータダイジェスト制作編集者: Luan Hongye、Aileen今こそAIの倫理について議...

...

...

AI で非構造化データの力を引き出す方法

ほぼすべての業界がデジタル化しており、「データは新たな石油である」とよく言われます。しかし、十分に認...

...

それでおしまい? Gptsのプロンプト単語をランダムにクロールします

11月7日のOpenAI開発者会議でサム・アルトマンがGptsを正式に発表しリリースして以来、Gpt...

赤ちゃんのように学習するディープマインド社の新モデルは、28時間で物理世界のルールを学習します

Deepmind は、直感的な物理学を学習できるモデルを構築し、モデルがなぜこの能力を実現するのか...

あなたが知らないかもしれないゲームにおける AI に関する 5 つの予測

仮想現実ゲームの発展により、ゲームのプレイ方法や交流の仕方が急速に変化しています。仮想現実はゲームの...

ネットワーク攻撃と防御における人工知能の応用と問題分析

サイバー攻撃と防御の対決は絶えず進化とアップグレードを続けています。人工知能は自己学習と適応能力を備...