OpenAI、開発者向けGPTチャットボットAPIのメジャーアップデートを発表、価格を値下げ

OpenAI、開発者向けGPTチャットボットAPIのメジャーアップデートを発表、価格を値下げ

6月14日、OpenAIは大規模言語モデルAPI(GPT-4およびgpt-3.5-turboを含む)のメジャーアップデートを発表しました。これには関数呼び出し機能の追加、使用コストの削減、gpt-3.5-turboモデルの16,000トークンバージョンの提供が含まれます。

大規模言語モデル(LLM)は、自然言語を処理できる人工知能技術です。その「コンテキストウィンドウ」は、入力内容やチャットボットの会話内容を保存できる短期メモリに相当します。コンテキスト ウィンドウのサイズを増やすことは言語モデルにおける技術的な競争となっており、Anthropic は最近、Claude 言語モデルが 75,000 トークンのコンテキスト ウィンドウ オプションを提供するようになったと発表しました。さらに、OpenAIはGPT-4の32,000トークンバージョンも開発していますが、まだ一般公開されていません。

OpenAI は、最大 16,000 トークンの長さの入力を処理できる「gpt-3.5-turbo-16k」という、gpt-3.5-turbo の新しい 16,000 コンテキスト ウィンドウ バージョンをリリースしました。つまり、一度に約 20 ページのテキストを処理できるということです。これは、モデルでより大きなテキスト ブロックを処理および生成する必要がある開発者にとって大きな改善点です。

この変更に加えて、OpenAI は少なくとも 4 つの主要な新機能を挙げています。

  • チャット補完APIに関数呼び出し機能を導入
  • GPT-4とgpt-3.5-turboの改良版で「より操縦しやすい」バージョン
  • 「ada」埋め込みモデルの価格を75%引き下げました
  • gpt-3.5-turboモデルの入力トークン価格を25%引き下げました

関数呼び出し機能により、開発者は外部ツールを呼び出したり、自然言語を外部 API 呼び出しに変換したり、データベースクエリを実行したりできるチャットボットを簡単に構築できます。たとえば、「次の金曜日にコーヒーを飲みたいかどうかを確認するために Anya にメールを送信する」のような入力を、「send_email (to: string, body: string)」のような関数呼び出しに変換できます。特に、この機能により、API ユーザーはこれまで実現が困難だった JSON 形式の出力を簡単に生成できるようになります。

「より制御可能」とは、LLM を希望どおりに動作させる方法に関する専門用語ですが、OpenAI は、新しい「gpt-3.5-turbo-0613」モデルには、「システム メッセージを介してより確実に制御」できる機能が含まれると述べています。システム メッセージは、API に入力される特別な種類の命令であり、「あなたはグレムリンです。あなたはミルクシェイクについてしか話しません」など、モデルに動作方法を指示します。

機能の向上に加えて、OpenAI はかなりのコスト削減も実現しました。特に、人気の gpt-3.5-turbo モデルのトークン価格が 25% 引き下げられました。つまり、開発者はこのモデルを 1,000 トークンあたり約 0.0015 ドル、1,000 トークンあたり約 0.002 ドルで使用できるようになり、これは 1 ドルあたり約 700 ページのテキストを処理するのに相当します。 gpt-3.5-turbo-16k モデルの価格は、1,000 トークンあたり 0.003 ドル、1,000 トークンあたり 0.004 ドルです。

さらに、IT Homeは、OpenAIが「text-embedding-ada-002」埋め込みモデルの価格も75%引き下げたことにも気づいた。埋め込みモデルは、コンピューターが単語や概念を理解し、自然言語を機械が理解できるデジタル言語に変換できるようにする技術であり、テキストの検索や関連コンテンツの推奨などのタスクにとって重要です。

OpenAI はモデルを常に更新しているため、古いモデルが永久に残ることはありません。同社は本日、gpt-3.5-turbo-0301やgpt-4-0314など、一部の旧バージョンモデルの廃止を開始したことも発表した。同社によれば、開発者は9月13日までこれらのモデルを引き続き使用できるが、それ以降は古いモデルは利用できなくなるという。 OpenAI の GPT-4 API はまだ待機リストにあり、完全には公開されていないことに注意する必要があります。

<<:  生成 AI: サイバーセキュリティにとっての恩恵か、それとも災いか?

>>: 

ブログ    
ブログ    
ブログ    

推薦する

C# データ暗号化を実現する対称暗号化アルゴリズム

以下は、対称暗号化アルゴリズムの C# データ暗号化実装コードです。必要に応じて、さまざまなアルゴリ...

...

自然言語処理の応用展望

自然言語処理 (NLP) の定義自然言語処理(NLP)は、コンピューターが人間と同じように言語を理解...

...

OpenAI は機械学習をサポートするために k8s を 7,500 ノードに拡張

GPT-3、CLIP、DALL+などの大規模モデルのニーズや、ニューラル言語モデルに似たスケーリング...

Java ME での衝突検出アルゴリズムの実装

Java ME ゲーム開発では、衝突検出アルゴリズムを実装する必要があることがよくあります。たとえば...

3Dデモを使用してさまざまな最適化アルゴリズムを理解します。これはC++プログラマーにとって朗報です。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

不意を突かれたGoogleの「人間の創造」の成功は恐ろしい!人類は歴史上最悪の失業の波に直面しています...

01不意を突かれた!今回、Google は「人間を作った」のです! 5月8日、Googleは毎年恒...

...

人工知能:「全能」ではない

[[391544]]私の国の人工知能の研究と応用は世界でも比較的進んでいます。メディアは、中国はこの...

LeCunの新作、カード1枚でトレーニングできる!分散正規化、スパースエンコーダがクラッシュしなくなりました

最近、LeCun は、依然として崩壊問題と自己監督に関する新しい研究を発表しました。今回、彼は新しい...

機械学習におけるモデルドリフト

今日、機械学習モデルはビジネス上の意思決定の主な原動力となっています。他のビジネス戦略と同様に、これ...