AI導入で避けるべき5つの間違い

AI導入で避けるべき5つの間違い

人工知能と機械学習は、ビジネスの成功にとって貴重な資産となるでしょう。 AI を実装することで、企業はデータをふるいにかける手動のプロセスを自動化し、よりスマートで迅速なビジネス上の意思決定が可能になります。しかし、自動化と AI によって人間の責任がなくなるわけではありません。

1. 適切なユースケースを特定していない

今では、多くの企業が AI のメリットを認識しています。実際、ビジネスが自動化されていない場合、競合他社に遅れをとる可能性があります。 PwCの調査によると、回答者の86%がAIが自社の「主流の技術」になると予想しています。

AI の使用が急増しているにもかかわらず、ビジネスに AI を急いで導入するのは賢明ではありません。最良の結果を得るには、適切なユースケースに AI を適用することが重要です。 「この状況に AI を適用できるか?」と問うのではなく、「適切な AI が適切な状況に適用されているか?」と問うべきです。特定のビジネス プロセスへの AI の実装は、最終的には企業の時間とリソースの面で価値があるものでなければなりません。 AI がビジネス目標と一致していない場合、企業の時間とリソースが無駄になります。

2. 適切な人材を採用できない

テクノロジー業界の採用環境は変化しています。 CodingGame が最近実施した調査によると、採用担当者の約 50% が空いているポジションを埋めるのに苦労していると回答しています。テクノロジー分野、特に人工知能の分野では、採用がますます困難になっています。

AI 専門家を雇うことは、サッカーチームを編成するようなものです。フォワードだけ、またはディフェンダーだけで構成することはできません。 AI の観点から言えば、ジェネラリストのデータ サイエンティストだけを採用するのではなく、候補者の専門的なスキルと経験をビジネス ニーズに一致させることに重点を置いてください。たとえば、モデリングに関する深い専門知識は、徹底的な調査とソリューション開発に不可欠であり、データ エンジニアリング スキルはソリューションの実行に不可欠です。

3. 適切なデータメンテナンスを提供していない

AI 関連のビジネス目標はすべてデータから始まります。データは AI エンジンを動かす燃料です。企業が犯す最大の間違いの 1 つは、データを保護し、活用しないことです。これは、データは IT 部門のみの責任であるという誤解から始まります。データがキャプチャされ、AI システムに取り込まれる前に、ビジネス分野の専門家とデータ サイエンティストが関与し、ビジネス エグゼクティブが適切なデータが適切にキャプチャされ、維持されるように監視する必要があります。 IT 以外の人々にとって、良質なデータから高品質の AI 推奨を生み出せるだけでなく、彼らの専門知識が AI システムへの重要な入力となることを認識することが重要です。すべてのチームがデータの管理、確認、維持に対する責任感を共有できるようにします。

データ管理プログラムもデータケアの重要な要素です。データ管理とガバナンスのプロセスは、政府の規制や企業の義務への準拠を確保しながら、増大するデータの量、速度、多様性に対応するために進化する必要があります。これには、データの収集、データの保存、説明責任と定期的な評価のためのプロトコルが含まれます。

4. AIの有効性を維持できない

AI を長期にわたって効果的なソリューションとして維持するには介入が必要です。たとえば、AI が失敗したり、ビジネス目標が変わったりした場合は、AI プロセスを変更する必要があります。何も対策を講じなかったり、適切な介入を行わなかったりすると、AI システムがビジネス目標を妨げたり、反対に働いたりする可能性があります。

AI 価格設定システムを例に挙げてみましょう。 AI システムが市場の変化に適応できない場合、AI の有効性は低下します。言い換えれば、ソースデータの性質が変化するにつれて、AI システムは現在の市場の動向に適応する必要があります。

AI の有効性を測定する方法の 1 つは、営業チームのパフォーマンスを測定することです。効果的な営業チームは、目標達成に役立つ価格設定の推奨事項を順守したいと考えているため、そのパフォーマンスは価値を高める AI をどの程度導入しているかによって測定される必要があります。価格設定に関連する一般的な KPI には、利益率と収益が含まれます。主要業績評価指標を追跡すると、どの営業チームまたはチームメンバーが AI を導入しているかを明らかにするのにも役立ちます。これらの推奨事項によって主要業績評価指標が達成されない場合は、介入する時期かもしれません。

AI ユーザーの負担を最小限に抑えるために、介入は高度に自動化されたプロセスを通じて拡張可能かつ再現可能である必要があります。介入には、AI システムへの入力を確認し、その出力が期待どおりであることを確認するという 2 つの要素を含める必要があります。これらの各プラクティスは定期的に実行する必要があります。 AI が介入しなくなるまで待たないでください。その頃には、すでに収益に影響が出ている可能性があります。

5. 利用可能なデータに潜む潜在的なバイアスを考慮していない

人間と同様に、AI とその派生出力は、限られたデータ セットや代表的でないデータ セットにさらされると偏りが生じる可能性があります。これは AI モデルと記述的分析の両方に当てはまります。バイアスの存在とその後の考慮は、AI の背後にある意図とは無関係であることが多いです。したがって、これらのバイアスの結果が発生した場合、その責任は AI システム自体ではなく、AI ゲートキーパーにある場合が多くあります。

前述のように、データと介入は AI を効果的に活用するための重要な要素です。これは、AI に偏りが見つかった場合に特に当てはまります。しかし、問題を解決するよりも、問題を予防する方が常に優れています。可能であれば、人種、性別、階級などに対して不注意に偏ったデータを避ける必要があります。たとえば、消費者の所在地と収入に直接基づくモデリングでは、偏った出力が生成される場合があります。

偏見を防いだり修正したりするには、説明可能な AI がよい解決策となるかもしれません。説明可能な AI アプローチにより、AI モデルの予測や推奨を推進する主要な要因を特定し、介入プロセスを容易にすることができます。説明可能な AI 手法によって AI が偏った出力を生成する仕組みが実証されたら、組織のビジネスや消費者へのさらなる悪影響を回避するために、介入は迅速、反復可能、かつスケーラブルでなければなりません。

人工知能の助けを借りる

人工知能は、正しく使用すれば、企業にとって欠かせない資産となります。投資収益率の向上からビジネス目標の達成、顧客満足まで、その影響は非常に大きくなります。 AI を意図的に使用し、よくある間違いを避けるためのガイドラインを作成することで、AI の成長とビジネスの成功を並行して進めることができます。

<<:  単一の GPU で GPT-3 をトレーニングする方法にまだ苦労していますか? HP チューニングの新しいパラダイムをぜひご覧ください。

>>:  プラグアンドプレイ、トレーニング不要:ケンブリッジ大学、テンセントAIラボなどがトレーニング不要のクロスモーダルテキスト生成フレームワークを提案

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

GPT-4 には意識がありません!しかし、チューリング賞受賞者のベンジオ氏らの88ページの論文は、「スカイネット」が遅かれ早かれやってくることを示唆している。

今日まで人工知能は発展してきましたが、人工知能は意識を持っているのでしょうか?チューリング賞受賞者の...

意思決定インテリジェンス: 人工知能における新たな方向性

[[353168]]記者趙光麗最近、中国科学院自動化研究所(以下、自動化研究所)は、「妙算智慧」戦術...

剪定法を使用してより良い決定木を設計する方法

決定木 (DT) は、分類および回帰の問題を解決するために使用される教師あり機械学習アルゴリズムです...

ドイツ企業の47%は、人工知能の最大の利点は生産効率の向上であると考えている。

ドイツ連邦政府は2018年に「ドイツ人工知能開発戦略」を発表し、人工知能分野におけるドイツの研究開発...

自動運転時代の前夜、ACCクルーズテクノロジーが台頭

自動車が発明された日から、自動運転機能への要望は、何世代にもわたるエンジニアたちの焦点となってきまし...

Baidu のディープラーニング プラットフォーム PaddlePaddle フレームワークの分析

PaddlePaddleは、Baiduが2016年8月末に一般公開したディープラーニングプラットフォ...

...

ゴースト吹き替えチームにとって朗報です! AIがあらゆる言語のリップシンクを自動生成

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

製造および産業環境監視アプリケーション向けの AI 搭載マシンビジョン

従来の産業および製造現場では、作業者の安全の監視、オペレーターの効率性の向上、品質検査の改善はすべて...

ユーザーエクスペリエンスは過去のものになりました。AIは国民、さらには社会の視点から問題を考える必要があります。

今日、テクノロジーの巨人とその AI ベースのデジタル プラットフォームおよびソリューションは、世界...

アンドリュー・ン氏の新演説:AIは業界の状況を変えており、企業の障壁はアルゴリズムではなくデータである

[[204846]] 1. 人工知能の応用と価値Andrew Ng 氏は、AI は新しい電気であると...

...

ロボットの台頭:伝統産業を変革する新技術

アルゴリズムの時代が到来しました。 Google、Amazon、AppleなどのIT大手が開発した、...

2020年のIEEEフェローリストが発表:約30%が中国人で、葉潔平、張同、周博文、熊慧などのAI専門家が選出

本日、IEEE 2020フェローのリストが発表されました。統計によると、280人以上が選出され、その...

AR グラスは機械学習のキラーアプリか?

[[286412]] Facebook AI Researchの主任AI科学者であるヤン・ルカン氏...