AIは人間の目で世界を見ることを学習し、人間の瞳孔の微妙なズームをシミュレートすることさえできる。

AIは人間の目で世界を見ることを学習し、人間の瞳孔の微妙なズームをシミュレートすることさえできる。

人間が世界をどのように見ているかを理解するために、コンピューターは「目を動かす」ことを学び始めています。

次に、眼球を回転させて「観察する情報を収集」し、テキストまたは画像に焦点を合わせて「データの収集」を開始します。

普通に絵を読んだり鑑賞したりできるだけでなく、人が退屈、興奮、緊張などさまざまな感情を抱いたときの瞳孔の拡張や瞬きの頻度の微妙な変化をシミュレートすることもできます。

実際、これはデューク大学の研究者によって開発された、人間が世界を観察する方法を正確にシミュレートできる新しい「仮想の目」です。この研究はオープンソース化されており、トップクラスのコミュニケーションカンファレンスである IPSN 2022 でまもなく公開される予定です。

この研究を通じて得られたほぼ実際のデータはすべてコンピューターにフィードバックされます。

このデータは何に役立ちますか?

視線追跡技術に基づいて取得されるこのデータは、視線移動データと呼ばれることが多く、注視時間、眼球運動、追従動作などの複数の属性が含まれます。

私たちがしばしば目を心の窓と考えるのと同じように、これらの眼球運動データは人間に関する多くの実際の情報を反映することができます。たとえば、瞳孔の拡張、眼球運動、眼球の徘徊時間から、飼い主の現在の気分(退屈か興奮か)、飼い主が集中しているか、飼い主がタスクに熟練しているか初心者か、さらには飼い主が特定の言語に堪能かどうかがわかります。

この研究の著者の一人であるマリア・ゴルラトヴァ氏は、次のようにも述べています。

[視線追跡データ]は、性別や人種に関する偏見、他人に知られたくない興味、自分自身についてさえ知らない情報をうっかり明らかにしてしまう可能性があります。

したがって、これらの眼球運動データの調査と研究により、認知負荷の推定、座位活動の認識、読解力の分析、感情認識など、一連のセンシングアプリケーションが自然に生み出されます。 Microsoft の VIVE Pro Eye など、多くの企業や開発者が視線追跡を使用して、視線に基づく新しいインタラクションや環境認識を可能にし始めています。

しかし、大規模なラベル付き眼球運動データを収集する場合、いくつかの問題が避けられません。

  • 人間の視覚行動のランダム性により、データ収集のコストが増加します。
  • 人間を対象とする研究にはプライバシーの侵害が伴う可能性があります。
  • モデルのトレーニングに必要なデータを生成するための時間コストが高すぎる (何百人もの人がデバイスを使って何時間もかけて目を観察する必要がある)。

仮想の目がデータを収集する

上記の問題をどのように解決するのでしょうか? デューク大学の研究チームは、心理学にヒントを得たモデル EyeSyn を提案しました。このモデルは、公開されている画像とビデオのみを使用して、任意のサイズの眼球運動データセットを合成できます。全体的なアーキテクチャは次のとおりです。

全体的な考え方としては、画像やビデオを入力として取り込み、それらを視覚刺激として使用して、対応する眼球運動データを生成することです。

大規模なアーキテクチャは、次の 3 つの小さなモデルで構成されています。

ReadGaze モデル

テキストを読む際の視覚的な動作をシミュレートします。テキスト認識に基づく検出モジュールと、スキップ視覚動作をシミュレートするシミュレータを備えています。

VerbalGaze モデル

言語コミュニケーション中に顔の特定の領域を注視し、顔の異なる領域間で注意を切り替える視覚動作をシミュレートします。顔領域追跡モジュールとマルコフ連鎖ベースの注意モデルを備えています。

StaticScene および DynamicScene モデル

静的および動的なシーンを知覚する際の目の動きをシミュレートします。画像の特徴に基づいた顕著性検出モデルを備えており、視覚シーン内の潜在的な固定点の位置を識別します。

△ダイナミックシーンにおける視線移動データ

これらのコンポーネントに基づいて、EyeSyn は既存の眼球運動データに基づいてトレーニングする必要がなく、仕事に投入後すぐに作業を開始できます。

さらに、従来の視線追跡データ収集プロセスと比較して、EyeSyn は、さまざまな視線追跡設定、視覚距離、視覚刺激のレンダリング サイズ、サンプリング周波数、および対象の多様性をシミュレートする際に、より便利で高速です。

現在、EyeSyn は、ほんの少数の画像とビデオのセットを基に、180 時間を超える視線追跡データを合成できます。これは、既存の視線ベースのアクティビティ データセットの 18 ~ 45 倍の大きさです。

「合成データ自体は完璧ではないが、良い出発点となる」と研究者のマリア・ゴルラトワ氏は語った。

実際の活動データセットを構築するために被験者と協力して過度の時間と費用を費やす代わりに、中小企業はこのアプローチを直接使用できます。

眼球運動データをより高速に生成する方法により、Metaverse プラットフォームでの一般的な VR、AR、および関連アプリケーションの作成がより便利になります。

マリア・ゴルラトワ

紙:

https://www.researchgate.net/publication/359050928_EyeSyn_Psychology-inspired_Eye_Movement_Synthesis_for_Gaze-based_Activity_Recognition.

オープンソースリンク:

https://github.com/EyeSyn/EyeSynResource.

参考リンク:

https://techxplore.com/news/2022-03-simulated-human-eye-movement-aims.html.

<<:  バイトダンスの最新のテキスト生成画像AIには、トレーニングセットにテキスト説明付きの画像が含まれていません。

>>:  人工知能音声ジェネレーター、この10個で十分です

ブログ    
ブログ    

推薦する

4Paradigm、ビジネス担当者がAIアプリケーションを開発できるようにする新しいAIプラットフォームツールをリリース

9月18日、2018年世界人工知能会議中。 Fourth Paradigm は、自動機械学習プラット...

人工知能の時代に教育はどのように適応すべきでしょうか?

これからの学びは、従来の学校中心の島型ではなく、新しいタイプの島型になります。家庭、インターネット、...

...

Baiduの新しい論文はGram-CTCを提案:単一システムの音声転写が最高レベルに到達

[[188128]]最近、百度シリコンバレーAI研究所の劉海栄氏、李翔剛氏らは、音声認識の速度と精度...

米国のテクノロジー業界が冬を乗り切る中、プログラマーたちは仕事を維持するために率先して給与を削減している。 35歳の会社員:給料をもう少し下げてもいい

テクノロジー業界は歴史的に平均給与が最も高い業界の一つであり、リストのトップにランクされることも少な...

2024 年に向けた 6 つの生成 AI 予測

アナリストの Mike Leone 氏は、オープンソースから規制の変化まで、生成 AI の今後を予測...

2021 年のアクセス制御市場と技術開発の動向

[[396193]]アクセス制御市場世界のアクセス制御システム市場は、2020 年の 86 億米ドル...

...

Groq LPU の謎を解明: 世界最速のハードウェア アクセラレータの基礎となるアーキテクチャ設計!

先月末、スタートアップ企業Groqの製品が一夜にして人気を博した。自社開発のハードウェアアクセラレー...

...

人工知能とモノのインターネットのダイナミックな融合を探る(パート 2)

前回の記事「人工知能とモノのインターネットの動的統合を探る(I) 」の続き1. IoTにおけるAIの...

AIはキーボードの音を聞いてパスワードを盗むことができ、その精度は最大95%

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

AIがデータセンターのワークロード管理の課題を解決

データセンターのワークロードが急増するにつれ、効率性の向上と経費削減を図りながら IT チームの管理...

...

ウォールストリートジャーナル:大手テクノロジー企業は依然として生成AIサービスで利益を上げようとしている

昨年末の ChatGPT の登場により、生成 AI の流行が巻き起こり、現在ではほぼすべての主要ソフ...