「非ディープ ネットワーク」12 層が 50 層に勝つ、プリンストン + インテル: 深い方が必ずしも良いわけではない

「非ディープ ネットワーク」12 層が 50 層に勝つ、プリンストン + インテル: 深い方が必ずしも良いわけではない

[[432431]]

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

「ディープ」はディープニューラルネットワーク(DNN)のキーワードです。しかし、ネットワークが深くなるほど、トレーニング中のバックプロパゲーション チェーンが長くなり、推論中の連続計算ステップが増え、レイテンシが高くなります。

深さが十分でない場合、ニューラル ネットワークのパフォーマンスが低下することがよくあります。

こうなると、次のような疑問が生じます。高性能な「非ディープ」ニューラル ネットワークを構築することは可能なのでしょうか?

プリンストン大学インテルの新しい論文は、それが実際に可能であることを証明しています。

彼らは、12 層ネットワークParNetのみを使用して、ImageNet で SOTA に近いパフォーマンスを達成しました。

ParNet は、ImageNet で 80% 以上の精度、CIFAR10 で 96% 以上の精度、CIFAR100 でトップ 1 の精度 81% を達成しています。また、MS-COCO で 48% の AP を達成しています。

ネットワークが非常に「浅い」場合、どのようにそれを実行するのでしょうか?

並列サブネットはパフォーマンスを向上します

ParNet における重要な設計上の選択は、並列サブネットワークの使用です。レイヤーを順番に配置するのではなく、並列サブネットワークに配置します。

ParNet は、異なる解像度で機能を処理する並列サブ構造で構成されています。これらの並列サブ構造をストリームと呼びます。異なるストリームからの機能はネットワークの後の段階で融合され、これらの融合された機能は下流のタスクに使用されます。

ParNet では、著者は VGG スタイルのブロックを使用します。ただし、非ディープ ネットワークの場合、3×3 畳み込みの受容フィールドは比較的制限されます。

この問題に対処するために、著者らは Squeeze-and-Excitation 設計に基づいて Skip-Squeeze-Excitation (SSE) レイヤーを構築しました。 SSE モジュールを使用して変更された Rep-VGG は、Rep VGG-SSE と呼ばれます。

ImageNet などの大規模なデータセットの場合、非深層ネットワークでは非線形性が十分でない場合があり、その表現機能が制限される可能性があります。そのため、著者らはReLUをSiLU活性化関数に置き換えました。

同じサイズの RepVGG-SSE ブロックの入力と出力に加えて、ParNet にはダウンサンプリング ブロックと融合ブロックも含まれています。

モジュールは解像度を下げて幅を広げ、マルチスケール処理を可能にします。一方、融合ブロックは複数の解像度からの情報を組み合わせ、推論中のレイテンシを削減するのに役立ちます。

浅い深度で高いパフォーマンスを実現するために、著者らは幅、解像度、ストリーム数を増やすことで ParNet を拡張しました。

著者らは、ムーアの法則が減速するにつれてプロセッサ周波数の増加の余地が限られるため、並列コンピューティングはニューラルネットワークがより高速な推論を実現するのに役立つだろうと述べている。並列構造の非深層ネットワーク ParNet には、この点で利点があります。

実際のパフォーマンスはどうですか?

ImageNet データセットでは、ParNet は Top-1 と Top-5 の両方で SOTA のパフォーマンスに近い値を示します。

MS-COCO タスクでは、ParNet は最小のレイテンシで最高のパフォーマンスを実現します。

しかし、層数が少ないにもかかわらずネットワーク幅が広くなるため、「非深層ネットワーク」の実際のパフォーマンスに疑問を抱く人もいます。実際、ParNetはより深いResNet50よりもパラメータが多く、あまり説得力がないようです。

しかし、著者は、「非ディープ」ネットワークは複数の GPU によるより高度な並列コンピューティングを活用できるとも述べています。

最後に、ParNet GitHub ページがセットアップされ、コードはまもなくオープンソース化される予定です。

<<:  この履歴書は人気があります:14nmコーヒーを手で挽き、マイクロソフトで性感染症を広め、90%の企業が和解の手を差し伸べる

>>:  メタバースと自動運転車のどちらが先に来るでしょうか?

ブログ    
ブログ    
ブログ    

推薦する

...

これらのよく知られた VR 音声テクノロジー ソリューションをご存知ですか?

最近、Oculus は、VR デバイスを使用する際にユーザーがよりインタラクションできるようにするこ...

...

...

ハイブリッドクラウド環境でディープラーニングを取り入れたID認証はより柔軟

[51CTO.com からのオリジナル記事] 入れ墨は、秦と漢の時代に広く使用されていた刑法の一種で...

TikTok本社は米国に残り、ByteDanceが管理権とコアアルゴリズムを保持する

事情に詳しい関係者らは、米政府に提出した提案に基づき、バイトダンスがティックトックの本社を米国内に維...

...

GenAI の投資が 2024 年にデータセンターにどのような変化をもたらすか

私たちは、日常の習慣から抜け出し、長い間待ち望まれていた自分自身を変えるために、ちょっとしたモチベー...

グラフディープラーニングで複雑な研究​​タイプのタスクを実装するのは、あまりにも面倒ですか?この新しいツールキットは、

ディープラーニングは、AI分野で最も注目されている分野の1つです。現在、PyGやDGLなどの主流のグ...

AI技術年次報告:中国の2つの側面におけるパフォーマンスは注目に値する

スタンフォード大学は最近、「人工知能指数(2018年グローバルAIレポート)」を発表しました。これは...

金メダルレベルの数学スキル:DeepMindの幾何学的推論モデルがNatureに掲載され、コードはオープンソースで、フィールズ賞受賞者が賞賛

今回、人工知能アルゴリズムが国際数学オリンピック(IMO)で大きな進歩を遂げました。本日発行された国...

...

「中国版ダヴィンチ」ロボットが人気!ブドウの皮を縫うだけでなく、このような創造的な作業もあります

ブドウを縫うことができる DIY ロボットアームを作りますか? [[428703]]最近、有名な「ハ...

データが足りない場合はどうなりますか?コンピュータビジョンデータ拡張手法の概要

データが足りない場合はどうすればいいですか?学者たちは、ディープラーニングモデルにおけるデータ不足の...