チップ不足は人工知能にどれほどの損害を与えるでしょうか?

チップ不足は人工知能にどれほどの損害を与えるでしょうか?

現在の半導体サプライチェーンのボトルネックの根本的な原因は何年も前から潜んでいたが、COVID-19パンデミックによってその問題が表面化した。 2020年2月の予測で、セミコンダクター・エンジニアリングは、通常、旧式で低速のチップに使用される200mmウエハーで作られたチップ工場設備の需要が供給を上回りそうだと警告した。

[[430364]]

最速のチップを必要とせず、200mm ウェハで製造できるモノのインターネット (IoT) デバイスの需要の急増は、チップの需給不均衡の根本的な原因としてよく挙げられます。急成長しているモノのインターネット(IoT)業界は、あらゆるサイズのチップの需要の急増を引き起こしている一方で、チップの生産はさらに遅れています。ウォール・ストリート・ジャーナルの記事によると、チップの納入サイクルは2021年第3四半期に22週間に達し、2020年末の13週間のほぼ2倍になったという。これは、当社が2013年に業界の監視を開始して以来、最も長い納期でもあります。自動車に使用されるマイクロコントローラーを含む他の特定の種類のチップの納期は最大 32 週間です。これが、過去1年間で中古車価格が21%上昇した根本的な要因です。

世界的なチップ不足は人工知能にも影響を及ぼし始めている。コンピューター ビジョンや NLP (自然言語処理) などの多くの AI モデルは、モデルのトレーニングに強力な GPU に依存しています。そのため、チップ工場が旧式の低速チップの生産に苦戦している一方で、GPU のようなハイエンドチップも不足しています。

GPU大手のNvidiaのCEO、ジェンスン・フアン氏は、同社がサプライチェーンの制約に直面していると警告した。 Nvidia の GPU 生産はアジアのチップ工場に依存しています。 「現在の見通しでは、需要が非常に大きいため、来年の大半は供給が逼迫するだろう」と黄氏は、同社が決算発表を行った後の8月15日のアナリストとの電話会議で述べた。

世界では企業のデジタル変革戦略が加速しており、人工知能アプリケーションの需要が急速に高まっています。これにより、新興分野である人工知能をターゲットにした新しいチップ設計のブームも引き起こされました。

設立4年の人工知能スタートアップ企業であるSambaNova Systemsの評価額は50億ドル以上である。同社は、ローカルデータフロー処理とプログラム可能なアクセラレーションを提供するように設計された次世代プロセッサであるReconfigurable Dataflow Unit (RDU: Reconfigurable Dataflow Unit) の製造に7nm (ナノメートル) プロセスを使用する契約をTSMCと締結しました。 RDU は、事前構成されたラックで販売されるか、SaaS (Software-as-a-Service) 配信方法を通じて API として提供されます。

高速ハードウェアはサンバノバのAIへの取り組みの一部に過ぎないと、同社のCEO兼共同創設者であるロドリゴ・リャン氏は語った。成功する AI ソリューションの開発には、他にも多くの要素が関係していると彼は述べた。

チップ不足により、業界はコンピューティング効率に重点を置くようになりました。エンドユーザーは、この効率性のメリットを享受するために、コモディティ コンポーネントではなく AI 固有のソリューションにますます目を向けるようになっています。 AI はチップだけでは解決できないシステムの問題です。AI プロジェクトを正常に実稼働させるには、エンドユーザーが AI をワークフローやアプリケーションに統合できる必要があります。個々のコンポーネント (チップなど) と自己統合ソリューションを蓄積することは、時間と費用のかかる作業であり、ほとんどの組織には必要な重要なスキルと専門知識が欠けています。

チップ不足に加えて、同様に重要な問題は AI 人材の不足です。 「現在、AI の才能を持つ人材のほとんどは大手テクノロジー企業で働いています」と Liang 氏は言います。「AI の公平性をさらに普遍的に実現するには、AI の実装と拡張に必要な専門知識をエンドユーザーが習得するためのハードルを下げる、使いやすい製品を業界が提供しなければなりません。」

確かに、私たちは興味深い時代に生きています。 IoTデバイスの爆発的な増加、在宅勤務の必要性、チップ工場自体の生産能力不足などが相まって、チップの需要が供給を上回っています。

しかし、危機はチャンスにもなり得ます。処理能力が限られている場合、革新的な企業はその制限を回避する方法を見つけるでしょう。企業は新たな半導体工場を建設するために数千億ドルを投じることを約束した。多くの中国企業もチップの研究開発および生産産業への投資を開始している。この危機は、今後数年間で業界がさらなる革新を起こすよう促すことになるだろう。

<<:  科学技術史上最も爆発的な組み合わせ「メタバース + ブレイン・コンピューター・インターフェース」、私たちはそこからどれくらい遠いのでしょうか?

>>:  中国科学院自動化研究所は、科学サブジャーナル「自己組織化バックプロパゲーションがネットワーク学習効率を向上」を出版した。

ブログ    
ブログ    

推薦する

マイクロソフトはOpenAIの警告を無視し、未熟なBingチャットサービスを開始したと報じられている。

マイクロソフトのBing AIチャットボットは、最初にリリースされたときに論争と混乱を巻き起こしたが...

生徒のエッセイ採点における新たな傾向: 教師と AI の共同モデル

テクノロジーが進歩するにつれ、それが従来の人間の仕事をどのように変えたり、置き換えたりするのかという...

...

IoTとAIがコロナウイルスの流行中に企業の事業再開をどのように可能にしているか

[[333668]]数か月に及ぶ極度の不確実性、経済の閉鎖、孤立の後、ようやくゆっくりと経済が機能し...

...

...

...

マイクロソフト、テンセント、インテルがキュウリを栽培する理由:AIのせい

[[249198]]マイクロソフト、テンセント、インテルがキュウリ栽培にAIを活用北京時間11月13...

Python の顔認識の優れた教育例、顔認識システムを構築するための 40 行のコード!

[[229034]] Face Id は、高性能な顔認証ソフトウェアです。公式の主張は、「100 ...

人工知能の最前線:ブレークスルーの機会と希望

[[253441]]人工知能技術の進歩、産業の革新、産業の発展は、産業の基礎となる人工知能の最先端の...

2021 年の人工知能のトップ 10 トレンド

コロナウイルスのパンデミック以前、AI業界は2020年に大きな成長を遂げると予想されていました。 2...

自動運転企業Roadstar.aiはシリーズA資金調達で1億2,800万ドルを調達し、2020年までに1,500台の自動運転車を運行する予定だ。

自動運転企業Roadstar.aiは最近、 1億2,800万米ドルのシリーズA資金調達ラウンドの完了...

とても驚きました! GPT-4V錯視チャレンジ記録: 間違っているはずのものは間違っていない、間違っているはずのないものも間違っている

GPT-4V は視覚エラーマップに挑戦し、その結果は「衝撃的」でした。 「どちらの側が明るいですか」...

ベクトルインデックスの概念を解明する

ChatGPT が一般公開されて以来、LLM (大規模言語モデル)、RAG (検索拡張生成)、ベクタ...

...