AIが侵害後の疲労を防ぐ方法

AIが侵害後の疲労を防ぐ方法

データ侵害疲労は長年の課題です。最高情報セキュリティ責任者 (CISO) は、絶え間ない問​​題解決と侵害による影響への対処に圧倒され、セキュリティ チームは疲れ果てています。消費者もまた、データ侵害が多発していることや、サイバーセキュリティに対する全体的な理解が不足していることから、関心を失っている。

[[420517]]

データ侵害疲労を完全に解消する唯一の方法は、侵害を阻止することです。もちろん、これは不可能です。したがって、次のステップは、潜在的なインシデントが本格的な脅威になる前に対処することです。しかし、今日のサイバーセキュリティ環境は、過労や燃え尽き症候群につながっています。人々にさらに多くのことを処理するよう求めても、問題は解決しないことがよくあります。

人工知能(AI)と機械学習(ML)は潜在的な解決策となるかもしれない。「自社のセキュリティ態勢を自分で管理できる」と、ダセラのCEO、アニ・チャウドゥリ氏は電子メールのインタビューで語った。 「自動化ソリューションに投資してください。また、フェデレーション ソリューションにも投資してください。セキュリティ チームの帯域幅を拡大するために、他のチームのワークフローを改善するソリューションに投資してください。」

データ侵害が多すぎることの危険性

仕事のことで眠れなくなるような人はいないはずですが、Forrester の調査によると、サイバーセキュリティ専門家の 3 分の 1 がまさにそうしているそうです。そして、ほぼ全員が、組織内で違反が発生した場合、それは自分たちの責任だと感じています。この重い責任感のせいで、多くの貴重で熟練した従業員が業界から追い出されてしまっています。経験豊富なスタッフがいなければ、サイバーインシデントの脅威が増大し、サイクルが再び始まります。

消費者側でも、データ侵害に対して無関心になってきています。多くの人は、攻撃者が何度も個人情報を盗んで販売しているため、最も基本的なセキュリティ対策を実施する意味がないと考えています。カーネギーメロン大学の調査によると、侵害の警告を受けた後、パスワードを変更したのは消費者のわずか3分の1だった。ユーザーがこれを実行するには数か月かかる可能性があり、影響を受ける可能性があることをユーザーが認識している場合でも同様です。むしろ、彼らは警報を無視するでしょう。

人工知能とサイバーセキュリティ

まず第一に、AI は万能薬ではないということを明確にする必要があります。このテクノロジーは組織のあらゆる問題を解決できるわけではありませんが、CISO とそのチームに疲労のサイクルから抜け出すために必要な後押しを与えるはずです。

私たちは、最も日常的な(そして頭を悩ませる)タスクを AI に「教える」ことができます。そのタスクの中には、データ侵害が始まる前にそれを検出するタスクも含まれます。機械学習アルゴリズムを使用することで、AI はログをすばやく読み取り、ネットワーク内の異常を追跡できます。ログを確認することの重要性は軽視されがちですが、ログを確認することで、チームはシステム内で異常なアクティビティが発生していることを発見し、最初の攻撃ポイントの 1 つとなります。しかし、これには時間がかかり、熟練した人材を他の緊急作業から引き離す必要があります。多くの組織は、AI を、エントリーレベルの職種であってもスキルギャップを解消する手段と見なしています。 AI により誤検知の数が減り、時間が節約されます。

クレデンシャルスタッフィングは、脅威アクターのお気に入りのツールとなっています。内部者の認証情報を盗み、簡単に検出されることなくネットワーク全体への扉を開き、ここからデータ侵害が始まる可能性があります。セキュリティ チームが発見する前に、ネットワーク内の複数のクラスターが侵害されていた可能性があります。 AI は従業員の習慣を識別し、行動モデルを使用して、通常の 9 時から 5 時までの従業員が午前 3 時に突然機密データベースにアクセスしたり、遠隔地の従業員が突然ログインしたりするなど、異常な事態を検出できます。重要なのはパターン認識と、普通ではないものを嗅ぎ分ける能力です。

AIは完璧ではない

AI はセキュリティ チームの多くのタスクを引き受け、軽減および防御戦略に対してより的を絞ったアプローチを提供できますが、CISO が夜も眠れなくなるような欠点もあります。人工知能はサイバー犯罪者にとって新たな攻撃ベクトルを生み出します。攻撃者は AI を偽情報のツールとして使用し、データを武器化することができます。 AI の脆弱性を悪用した攻撃は、検出がより困難なデータ侵害につながる可能性があります。データ侵害疲労を軽減するはずのツールが、結局は状況を悪化させてしまう可能性があります。

AI セキュリティは、データ侵害との戦いにおいて CISO やセキュリティ チームに取って代わるものではありません。代わりに、最も早い段階で潜在的な脅威に対処する方法として人間と協力します。最良の場合、検出、保護、軽減が容易になり、ストレスが軽減されます。

<<:  猿人歩行からAIまで:三次元戦略で一人ひとりに寄り添う「真のセキュリティ」

>>:  人工知能の研究内容:自然言語処理と知的情報検索技術

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

人工知能のもう一つの方向性:メモリスタに基づくストレージおよびコンピューティング技術

[[325184]]この記事はLeiphone.comから転載したものです。転載する場合は、Leip...

生成AI: 電子商取引の新たなフロンティア

AI の真の可能性が現れ始めたばかりですが、テクノロジーは電子商取引業界の生産性向上と優れた顧客サー...

経験を要約し、進化を続け、インテリジェントエージェントのパラメータを最適化するコストを削減できます。

大規模モデルの出現は、インテリジェントエージェントの設計に革命的な変化を引き起こしました。ChatG...

人工知能を使って人間の労働を監督すると、技術的でない困難に直面する

リモートワークの標準化により、クラウド監視ソフトウェア市場が生まれました。最近、Enaible とい...

...

Github を席巻: アルゴリズム ビジュアライザーはアルゴリズムを視覚化し、アルゴリズムの学習を容易にします

[[327717]] 今日はオープンソース プロジェクトを紹介します。このプロジェクトの素晴らしい...

...

CMU と Adob​​e が協力: GAN モデルは事前トレーニングの時代を先導し、トレーニング サンプルのわずか 1% しか必要としません

事前トレーニングの時代に入ってから、視覚認識モデルのパフォーマンスは急速に向上しましたが、生成的敵対...

...

孤独を研究していますか? Reddit のホットな話題: AI のゴッドファーザー、ヤン・ルカンが提案した「エネルギー モデル」とは一体何でしょうか?

「エネルギー自己教師学習っていったい何?」と多くのRedditネットユーザーがコメントした。ちょう...

5分間の技術講演 | GET3D生成モデルの簡単な分析

パート01●序文近年、MidjourneyやStable Diffusionに代表されるAI画像生成...

ドライバー疲労モニタリングシステムの開発動向に関する簡単な分析

車両に先進運転支援システムが搭載されることで、ドライバーの安全性と快適性がさらに向上しました。先進運...

一貫性ハッシュアルゴリズムとは何ですか?

[[413431]]一貫性のあるハッシュコンシステントハッシュ法は、ノードを削除または追加する際に...

CPU、TPU、GPU、DPU、QPUについて学ぶ

AIの人気に伴い、CPU、TPU、GPU、DPU、QPUなどの略語がさまざまなメディアで飛び交ってい...

AIと行動科学がワクチン接種への躊躇にどう対処できるか

Fractal Analytics の共同創設者 Ram Prasad 氏は、AI が問題領域の特定...