機械学習プロジェクトにおける特徴エンジニアリングの 5 つのベスト プラクティス

機械学習プロジェクトにおける特徴エンジニアリングの 5 つのベスト プラクティス

私たちは長年にわたり、機械学習プロジェクトで何が機能し、何が機能しないかを特定するために、さまざまな手法とアプローチを採用してきました。以下の 5 つの手順をまとめましたので、ご参考になれば幸いです。

[[398566]]

シンプルな機能を生成する

モデリング プロセスを初めて開始するときは、できるだけ多くの単純な機能を生成するようにし、コーディングに時間がかからない機能を生成するようにします。たとえば、Word2vec モデルをトレーニングする代わりに、最小限のコードで何千もの特徴を生成する単純な bag-of-words モデルを最初に実装できます。 1 つ以上の特徴の組み合わせが予測に役立つかどうかを事前に明確に知る方法がないため、最初から特徴として測定できるものはすべて使用する必要があります。

ID は機能としても使用できます (必要な場合)

一意の ID はモデルの一般化にあまり貢献しない可能性があるため、機能セットの一部として ID を追加するのは愚かなように思えるかもしれません。ただし、ID を含めると、実践者は一般的なケースでは 1 つの動作を持ち、他のケースでは異なる動作を持つモデルを作成できます。

たとえば、ある場所を説明するいくつかの特徴に基づいて、その場所についての予測を行いたいとします。機能セットの一部として場所の ID を含めることで、一般的な場所のトレーニング例をさらに追加し、他の特定の場所で異なる動作をするようにモデルをトレーニングできるようになります。

カーディナリティを減らす(可能な場合)

一般的な経験則として、多くの異なる一意の値(たとえば 12 個以上)を持つカテゴリ機能がある場合は、その機能に基づいてモデルを異なる動作にしたい場合にのみ、その機能を使用する必要があります。たとえば、米国には 50 の州があるため、モデルの予想される動作をカリフォルニア州では 1 つの方法、フロリダ州では別の方法にしたい場合は、「州」という特徴を使用することを検討します。

一方、「状態」機能に応じて異なる動作をするモデルが必要ない場合は、「状態」機能のカーディナリティを減らす方がよいでしょう。

数え上げ問題に注意する

場合によっては、Bag of Words (BoW) の場合のように、ドキュメントの長さが時間の経過とともに増加または減少しない場合、合計は時間の経過とともにほぼ同じ範囲に留まります。

問題を引き起こしている可能性のあるインスタンスを数えます。 たとえば、あるシナリオでは、ユーザーがサービスに加入してから行った通話の数をカウントする機能があります。 サブスクリプション サービスを提供している会社が長い間存在している場合、純粋な統計では、その会社が多数の電話をかけていることがわかります。

データが増えるにつれて、現在は頻度が低い値も将来的には頻繁に出現するようになる可能性があります。したがって、このような問題に対処するための時間枠を増やす必要がある。

特徴選択を実行する

絶対に必要な場合にのみ機能選択を実行する理由はいくつかあります。

モデルは解釈可能でなければならないので、最も重要な特徴だけを残すのが最善である。

厳しいハードウェア要件がある

大規模な実験を実行したり、本番環境向けにスキーマを再構築したりする時間があまりない

複数のモデルトレーニング間で分布の変化が予想される

<<:  中国人の「専門用語」データセット、AI:あなたはDBQさえ理解していない

>>:  AIと自動化によるセキュリティの向上

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

マイクロソフトは、兆パラメータのAIモデルのトレーニングに必要なGPUを4,000から800に削減しました。

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...

メタバースの開発にはどのような重要な技術が必要ですか?

メタバースは、信頼できる資産価値とアイデンティティ認証を備えた仮想アクティビティを実行するためのプラ...

AIインタラクションエクスペリエンスを向上させるにはどうすればよいでしょうか?まずこの三元理論を理解しましょう

概要:人工知能製品が徐々に人々の仕事、生活、娯楽に浸透し、あらゆる分野に革命的な変化をもたらすことは...

段階的な自動運転は後から追いつくことができるか?

自動運転の何十億ドルもの利益の一部を欲しがらない人はいないだろう。最近、SAIC傘下のXiangda...

DNAを使って画像を直接保存する「生きた細胞カメラ」は96ピクセルの解像度を持つ

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

大型模型+ロボット、詳細なレビューレポートはこちら、多くの中国の学者が参加

大型モデルの優れた能力は誰の目にも明らかであり、ロボットに統合されれば、ロボットはより賢い脳を持つこ...

ChatGPTに勝つ? OpenChat が 105.7% のパフォーマンスでスタンフォード AlpacaEval オープンソース リストのトップに

一夜にして、新しいオープンソースモデル「OpenLLM」がChatGPTを打ち負かしたというニュース...

いくつかの典型的なアルゴリズム面接の質問に対する Java ソリューション

質問1:公共クラスtestClockwiseOutput { //行列を時計回りに印刷する @テスト...

...

Java プログラミング スキル - データ構造とアルゴリズム「バランス バイナリ ツリー」

[[390860]]バイナリソートツリーで起こりうる問題シーケンス {1,2,3,4,5,6} が...

ドバイが無人「空飛ぶ車」を試験:世界初のドローン旅客サービスとなる見込み

[[204952]]ボロコプター、ドバイで無人空飛ぶ車のテストを開始ロイター通信は北京時間9月26日...

人工知能技術はますます普及してきています。どの開発言語が優れているのでしょうか?

人工知能産業が台頭から急速な発展へと進む過程において、AIトップ人材の主導的役割は特に重要です。国か...

MITのコンピューターの先駆者ジョエル・モーゼス氏が死去! 50年前にコンピューターに微積分を教えた

コンピューターの専門家がまた一人亡くなりました! 著名なコンピューター科学者で、MITのコンピュータ...

人工知能はソフトウェア開発のパラダイムを変えている

今日、多くのソフトウェア開発者は、コードの作成とレビュー、バグの検出、ソフトウェアのテスト、開発プロ...