金融業界は AI を活用してデータを強化する準備ができているでしょうか?

金融業界は AI を活用してデータを強化する準備ができているでしょうか?

金融業界は国民経済の生命線です。モバイルインターネットやオンライン決済の普及により、データは企業にとってますます重要な資産となり、金融業界も大きな変化を遂げています。特に、金融とテクノロジーの融合により、金融業界が提供する機能は、資金を中心としたサービスからデータを中心としたサービスへと徐々に移行してきました。

同時に、金融業界は市場飽和とインターネット金融などの新興金融サービスとの競争に直面しており、特に中小規模の商業銀行、証券、保険業界にとって大きな課題となっています。テクノロジーの力をどのように活用して自社の競争力を高めるかが、金融企業が直面する最大の課題となっている。そのため、金融業界では最新のデータ アーキテクチャを積極的に構築し、強力でインテリジェントなプラットフォームを活用してビジネス アプリケーションの作成を加速し、データの価値を最大化することで、最終的には運用コストの削減とより正確なマーケティングを実現しています。

データサイロによりデータアクセスが困難になる

[[325211]]

モバイル インターネットの時代では、データ (構造化データと非構造化データ) が生成される速度が大幅に加速しました。ある都市の商業銀行では、Oracle、DB2、MySQL、SQLServer リレーショナル データベース、MongoDB、HBase、ActiveMQ、WebService などのさまざまな環境があり、Web サイトの APP ログ、ソーシャル メディア、ビデオ、画像など、膨大な量のデータが生成されます。

同時に、これらのデータはパブリック クラウド、プライベート クラウド、従来のデータベースなど、さまざまなデバイスやアプリケーションに存在するため、データ サイロが作成され、データの接続が不可能になり、データ アクセスに影響が及ぶため、企業がデータから実際の分析情報を得ることがより困難になります。ある都市の商業銀行では、データがどこにあっても、AI を活用してさまざまな種類のデータを迅速に収集し、統合されたデータ レイクを形成したいと考えています。データをシンプルかつアクセスしやすいものにします。

データガバナンスツールの欠如によりデータ価値のマイニングが困難になる

[[325212]]

データ サイロは人工知能の導入に適していません。同様に、データが多すぎると、金融業界にデータ ガバナンスなどの問題も生じます。

都市商業銀行による個人および法人の預金、ローン、クレジットカード、資産管理などのオンラインおよびオフラインのアプリケーション業務が数百件増加するにつれて、膨大な業務ニーズから有効なデータを正確に選別する方法が、銀行の業務改善における中核的な要件となっています。そのため、データガバナンスを実現するために、収集された大量のデータをどのように効果的に整理、分類、ラベル付けするかが、ある都市の商業銀行がデータガバナンスプロセスで直面している課題となっています。ある都市商業銀行の CIO は、「私たちが直面している大きな課題は、データの価値を効果的に掘り出すために、膨大な量のデータを分類してラベル付けするための効果的なデータ ガバナンス ツールが不足していることです」と述べています。

データモデリングを実装するための効果的なAIツールの欠如

[[325213]]

世界経済の不確実性が広がる中、証券会社は顧客に貴重な情報を提供するために、データ モデリングとデジタル プロファイリングを迅速に実装する必要がありました。現在金融業界で導入されている従来のデータ分析システムでは、顧客のニーズとサービスをタイムリーに統合するためのデータ モデルを迅速かつ効果的に構築することができません。ある証券会社にとって、まず不足しているのは、自動化され、より洗練された、迅速な洞察とリアルタイム分析の機械学習モデルを迅速に構築し、証券会社がよりスマートにデータを分析できるようにする、マルチクラウド環境をサポートする AI プラットフォームです。機械学習理論の発展と成熟に伴い、いかに迅速にモデルを構築し、タイムリーに正確な判断を下すかが、人工知能の重要な応用トレンドとなっています。金融業界では特に、データを正確に識別・分析するための AI ツールを迅速に構築できる AI ツールの入手を熱望しています。

ビジネスとデータを効果的に結び付けることができない

[[325214]]

金融業界では、資産運用が大きな変化を遂げています。ビジネス モデルは手数料ベースのアプローチから目標ベースの計画支援へと変化しており、正確な顧客ニーズ分析とパーソナライズされたサービスが業界の要件となっています。そのため、AI ツールを通じて顧客の洞察を得る方法は、金融業界における資産管理の最も直接的かつ効果的な手段の 1 つとなっています。

ある証券会社の代表者は、「マーケティング分析サポートプラットフォームを構築し、データ主導の顧客インサイトへのビジネス変革を実現したいと考えています。包括的な顧客情報を収集し、あらゆる角度から分析することで、効果的なデータ支援型意思決定メカニズムを確立し、ビジネス変革メカニズムを実現できます」と述べました。AI分析と認知ツールを使用してユーザーを認識し、各顧客とその財務目標を理解し、製品とサービスをカスタマイズし、より差別化された資産管理エクスペリエンスを提供することは、証券会社の新たな需要となっています。

金融業界を含む、AI を利用してデータを強化したいすべての企業のために、ZDNet はビッグネームがストーリーを語る「AI 江湖詩篇」という短いビデオ コラムを開始します。IBM のビッグネームの専門家を招いて、企業ストーリーにおける AI の実装についてストーリーを語り、より多くの業界での AI の使用シナリオについて議論し、AI を業界データと組み合わせてアプリケーションの実践を強化する方法を詳しく説明します。

<<:  2020年の中国の人工知能産業の現在の市場状況と競争環境の分析

>>:  いくつかの一般的な暗号化アルゴリズムのPython実装

ブログ    

推薦する

...

金融分野で一般的に使用されているディープラーニングモデルのインベントリ

[[208429]]本日公開したこの記事では、著者の Sonam Srivastava が金融分野に...

海外メディア:GoogleはマーケティングのためにGeminiをリリースしたが、依然としてGPT-4に遅れをとっている

12月8日のニュース、今週の水曜日、Googleは最新の人工知能モデルGeminiをリリースしました...

機械学習でよく使われる7つの線形次元削減手法の概要

前回の記事では主に非線形次元削減手法についてまとめました。この記事では、一般的な線形次元削減手法につ...

トップマガジンTPAMI2023!生成AIと画像合成のレビューを公開しました!

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

...

...

考えてみましょう: なぜ AI が必要ないのでしょうか?

[[270404]] [51CTO.com クイック翻訳] 人工知能(AI)は今ホットな話題であり...

機械学習で保険ビジネスの問題を簡素化する3つのシナリオ

実際の請求ケースでは、保険会社は個人、シナリオ、さらには他の影響要因を含む大量のデータを使用する必要...

AIを活用したスト​​レージ施設は、企業がデータを最大限に活用するのに役立ちます

AI を活用したスト​​レージにより、企業はデータを迅速かつインテリジェントに分析し、ほぼ瞬時に洞察...

初のヒューマンモーションキャプチャーモデルをリリース! SMPLer-X: 7つのチャートを一掃

表現力豊かな人間の姿勢と形状の推定 (EHPS) の分野では大きな進歩が遂げられていますが、最も先進...

人工知能はブロックチェーン業界にどのような影響を与えるのでしょうか?

人工知能は人間が認識するのが難しい決定を下すでしょう。意思決定を行うには、アルゴリズムが大量のデータ...

FlashOcc: 占有率予測への新しいアプローチで、最先端の精度、効率、メモリ使用量を実現します。

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

グラフ最適化のためのエンドツーエンドの転送可能な深層強化学習

[[425806]]多様なアクセラレータ セットでトレーニングされた大規模で複雑なニューラル ネット...

一般開発者もBaidu Brain Industry Application Innovation Challengeに参加して大きな賞金を獲得できる

[51CTO.comからのオリジナル記事] 2018年、人工知能の発展は消費者向け人工知能から企業向...