ジェネレーティブ AI でデータ エンジニアリングを変革する方法

ジェネレーティブ AI でデータ エンジニアリングを変革する方法

企業が生産性を高め、顧客体験を強化する方法を模索する中、生成 AI は今後 10 年間であらゆる業界に影響を与えると予想されています。データ エンジニアリングに関しては、エンジニアが行う必要のある手作業の量を減らし、コードの構築を支援することを目的として、大手企業によってすでにかなりの数のユース ケースがテストされています。

生成 AI がデータ エンジニアに役立つユースケースをいくつか紹介します。

データのクリーニングと準備

データにはさまざまな形式があり、データ主導のプロジェクトを成功させるための重要な要素の 1 つは、データの品質が高く、エンド プラットフォームまたはアルゴリズムで読み取り可能であることを確認することです。データ エンジニア向けには、データの再フォーマットやクリーンアップに使用できるツールがありますが、データが不完全であったり、形式がサポートされていないために、これらのツールは処理段階で停止してしまう可能性があります。

生成 AI の自然言語処理機能により、データ エンジニアは、データのバッチに対して特定のクレンジングまたは準備を要求できるようになり、互換性がないためにデータのバッチが破棄されるという問題を回避できます。

コード変換

移行または最新化プロジェクト中に、プログラミング言語またはプラットフォームの変更により、完全なコード変換が必要になる場合があります。コーディング言語間の 1 対 1 の変更が常に利用できるとは限らず、プログラマーが正しい置換を識別できる必要があるため、これは非常に時間のかかるプロセスです。

ChatGPT のような生成 AI ツールは膨大な量のデータでトレーニングされているため、ドキュメント、テスト済みコード、フォーラムを参照して複数のプログラミング言語間の最適な変換を見つけることができるため、プログラマーにとって自然なアシスタントと考えられています。

コードを生成する

コード変換と同様に、生成 AI ツールは既存のコード ベースとベスト プラクティスに基づいてトレーニングされているため、データ エンジニアはそれらを使用して、追加された内容と一致する新しいコードを生成できます。これらのツールは、既存のコードも分析し、重複コードや定型コードの量を減らすための提案も提供します。

さらに、データ エンジニアはこれらのシステムを使用してデータ パイプラインを設計および実装できるため、データの品質とアプリケーションのパフォーマンスを分析する時間を増やすことができます。

テスト

生成 AI は、パフォーマンスと安全性をテストするためにさまざまな形式で展開できます。データ エンジニアリング チームが考えていなかったエッジ ケースも含め、配信されるアプリケーションまたはサービスのプロファイルに適合するテスト ケースを生成できます。

視覚化を作成する

データを取得して視覚化できるプログラムはすでに存在しますが、生成 AI を使用すると、データ エンジニアはよりニッチな変更を要求し、さまざまなシナリオでデータがどのように見えるかをテストできます。データ エンジニアはハンドルから手を解放することで、より多くの種類の視覚化を試し、最適なものを見つけることができます。

<<: 

>>:  大規模言語モデル (LLM) の脆弱性トップ 10

ブログ    
ブログ    
ブログ    
ブログ    
ブログ    

推薦する

速報、劉強東が核爆弾を投げる!宅配便は早く消えます!

本当に信じられません、この時代の変化のスピードは想像を絶します!革新!革新!再びイノベーション!次か...

2020 年の機械学習の 5 つのトレンド

[[318500]] [51CTO.com クイック翻訳]機械学習は、多くの人にとって新しい用語かも...

このAIはレディー・ガガ風にベートーベンの音楽を演奏することができ、ネットユーザーは楽しんで遊んでいる。

編集者注: OpenAI は数日前に突然 Twitch でライブ放送を開始しました。これまで、Ope...

畳み込みなしでTransformerのみをベースにした初のビデオ理解アーキテクチャがリリースされました

Facebook AI は、Transformer を完全にベースとし、畳み込みが不要で、トレーニン...

産業用ロボットは国内でどのように普及できるのか?標準を第一にすることが鍵

近年、自動化の需要が継続的に高まり、人口ボーナス要因の影響も継続して受け、わが国の産業用ロボットは急...

2023 年のネットワーク パーティション: AI と自動化が状況をどのように変えるか

ネットワーク セグメンテーションは、企業の攻撃対象領域を減らし、横方向の移動を防ぐ基本的な予防的セキ...

人工知能がヘルスケア業界にもたらす変化

AIヘルスケア企業のCEOが、医療におけるAIの応用、AIソリューションの購入方法、ヘルスケア分野に...

今年のノーベル賞はアルトゥール・エケルト氏が受賞すると見られている。百度研究所の科学者の力を過小評価すべきではない。

2019年のノーベル賞受賞者のリストは、今年10月7日から発表されます。発表日が近づくにつれ、学界...

ハリバートンのチーフデータサイエンティスト兼テクニカルフェローがエネルギー業界における AI アプリケーションの現状について語る

エネルギー産業はハイテク主導の産業です。石油・ガス業界では、過酷な条件下で大型機器を使用してさまざま...

AI が会議をよりクリエイティブにする 5 つの方法

[[263855]]人工知能について考えるとき、まず頭に浮かぶのは人間とのコミュニケーション、特に非...

機械学習チートシートを使用して難しい問題を解決します。できますか?

機械学習の初心者であっても、中級プログラマーであっても、この質問に戸惑うかもしれません。チートシート...

Uberの自動運転車の死亡事故から忘れてはならない10の教訓

自動運転技術は常に注目を集めてきたが、「幻滅」に直面している。これによって起きた初の交通事故死は、1...

マイクロソフトの「Office の新時代」イベント プレビューでは AI が紹介される: 新しい描画アプリ、ゲーム フレーム レートの向上など

マイクロソフトは3月8日、北京時間3月22日午前1時にオンライン新製品発表会を開催することを決定した...

都市と市民がスマートシティ技術から得られる恩恵

テクノロジーは非常に効率的かつ完璧なので、私たちはそれに気付くことすらありません。しかし、通勤時間が...