AI は驚異的な進歩を遂げていますが、多くの分野ではまだ限界があります。たとえば、コンピューター ゲームでは、AI エージェントにゲームのルールが事前にプログラムされていない場合、正しい選択を決定するまでに何百万回も試行する必要があります。人間は言語の使用を通じて過去の知識を新しいタスクに転用することに長けているため、同じ偉業をはるかに短い時間で達成することができます。 ドラゴンを倒すゲームでは、AI エージェントはドラゴンを倒さなければならないことを理解するまでに、他の多くのアクション (壁や花に向かって火を吐くなど) を試す必要があります。しかし、AIエージェントが言語を理解していれば、人間は言語を使って「ゲームに勝つにはドラゴンを倒せ」と指示するだけで済みます。 視覚ベースの言語は、人間がスキルを一般化し、それを新しいタスクに適用する上で重要な役割を果たしますが、これは機械にとって依然として大きな課題です。機械が真に知的になり、人間のように学習する能力を獲得するには、複雑な言語システムを開発することが不可欠です。 この目標に向けた第一歩として、Baidu IDL Lab は、教師あり学習と強化学習を組み合わせたシステムを開発しました。このシステムにより、親が赤ちゃんに教えるのと同じように、仮想教師が言語を知覚と行動に結び付けて仮想 AI エージェントに言語を教えることができます。 IDL Labの結果によると、トレーニング後、AIエージェントは教師の指示を自然言語で正しく解釈し、対応するアクションを実行できることがわかりました。さらに、AIエージェントは「ゼロショット学習能力」を発達させ、つまり、根底にある文章を理解できるようになったことを同研究所は発見した。「この研究は、機械に人間のように学習することを教えることに一歩近づくものだ。」 論文リンク: http://arxiv.org/abs/1703.09831 研究概要 この研究は、XWORLDと呼ばれる2D迷路のような環境で実施されました。Baiduの仮想エージェントは、仮想教師が発行した自然言語のコマンドに基づいてこの環境をナビゲートする必要がありました。最初は、エージェントはこの言語について何も知らず、すべての単語は同じように意味をなさない。 しかし、ロボットが環境を探索する際に、ロボットがコマンドの実行に成功した場合(または失敗した場合)には、教師は肯定的(または否定的)に応答します。 エージェントがより速く学習できるように、教師はエージェントが移動する際に環境に関する簡単な質問も行います。エージェントは質問に正しく答える必要があります。正しい行動/回答を奨励し、誤った行動/回答を罰することで、教師は多くの試行錯誤を経て、エージェントが自然言語を理解できるようにトレーニングすることができます。 コマンドの例には次のようなものがあります。
いくつかのQ&Aの例:
結果 最終的に、エージェントは教師のコマンドを正しく解釈し、正しい場所に移動できるようになります。さらに、このエージェントは研究チームが「ゼロショット学習能力」と呼ぶ能力を発達させた。これは、エージェントがこれまで見たことのないまったく新しいコマンドを提示された場合でも、以前に同様の形式の文章を十分に見たことがあれば、タスクを正しく実行できることを意味する。言い換えれば、エージェントは既知の単語で構成された新しい文を既知の方法 (文法) で理解することができます。 たとえば、ナイフでリンゴを切る方法を学んだ人は、ナイフでドラゴンフルーツを切る方法も知っているでしょう。過去の知識を新しいタスクに適用することは人間にとっては非常に簡単ですが、現在のエンドツーエンドの学習マシンにとっては依然として困難です。 機械は「ドラゴンフルーツ」がどのような見た目かは知っているかもしれませんが、そのコマンドを含むデータセットを使用して明示的にトレーニングされていない限り、「ナイフでドラゴンフルーツを切る」というタスクを実行することはできません。対照的に、私たちのエージェントは、まったく同じことについてトレーニングを受けなくても、ドラゴンフルーツの見た目や「ナイフで切る」タスクに関する知識を転送する能力を示しています。 下の図は、エージェントがナビゲーション タスク テストを正常に実行していることを示しています。 ナビゲーションステートメント
文章を識別する
ナビゲーションテスト
ナビゲーションステートメント
ナビゲーションテスト
Baidu Research Institute の追跡調査には 2 つの方向性があります。
Baidu の最終的な目標は、人間が自然言語を使用して実際の環境で本物のロボットを訓練できるようにすることです。 |
<<: 機械学習業界の発展はなぜ「オープンソース」から切り離せないのか
数日前、コンピュータービジョンとAIの専門家であるフィリップ・ピエニエフスキー氏は自身のブログに「A...
Q*予想はAIコミュニティで引き続き人気があります。誰もがQ*が「Q学習+A*」であるかどうか疑問に...
OpenAI ChatGPT Plus サブスクリプション支払いには強力な機能があり、高度な「データ...
私は最近、BP アルゴリズムを体系的に研究し、この研究ノートを書きました。私の能力が限られているため...
過去2年間、「百機種戦争」は中国で人気の技術トピックになりました。 2020年以降、中国は大型モデル...
本日、Meta は Code Llama シリーズで最大かつ最も強力なバージョンである Code L...
機械学習は、データセットに基づいて予測モデルを構築し、重要な意思決定に使用できる有用な回答を提供する...
[[386837]]ジョセフ問題1、2、...n と番号が付けられた n 人が輪になって座り、番号...
パート01 評価方法オーディオ品質の評価に関しては、オーディオの品質を完全に理解するために、主観的評...
この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...
ある報告書によると、自動化と人工知能は最大5年以内に人間の雇用を脅かすことになるという。このような状...