これまでの SaaS と同様に、AIaaS は、独自の AI ベースのシステムの開発に時間と費用をかけずに AI の力を活用したい企業にとって大きなメリットとなります。
SaaS (Software as a Service) がコンピューティングの未来だった時代を覚えていますか? サービスとしてのソフトウェアは 1960 年代から存在していましたが (当時はコンピューターが大きすぎて、ほとんどの企業が購入できませんでした)、インターネットが広く普及し、アクセス可能なリソースとなった 1990 年代後半まで、市場で本格的に普及することはありませんでした。インターネットにより、企業はメインフレーム、LAN、ローカル ハード ドライブをプログラムやデータでいっぱいにするのではなく、ソフトウェア アプリケーションをオフサイトのデータ センターに移動できるようになりました。 ドットコム ブームの時代のソフトウェア革新者は、サービスとしてのソフトウェアの継続収益モデル (アプリケーションにアクセスするための月額または年額のサブスクリプション) の利点を認識し、Salesforce や Evernote などの業界の先駆者が誕生しました。サービスとしてのソフトウェアは、中小企業が変化をもたらす手段でもあります。ハードウェアやインフラストラクチャに多大な投資をすることなく、効率性と革新性を高める最先端のソフトウェア アプリケーションをサブスクライブできます。 SaaS が 20 年近くにわたってどのように使用されてきたかを知ることは、今日の市場における AI の位置づけを理解する優れた方法です。独自の AI ベースのシステムを開発するために時間とお金を投資することなく、SaaS を活用して革新と成長を遂げる企業がますます増えています。 今度はAIの番 SaaS と同様に、AI は 1960 年代から存在しています。しかし、計算上の制限により、AI はこれまで普及してきませんでした。一度にアクセスして処理できるデータの量は限られています。人工知能の爆発的な成長は、コンピュータ処理能力の急速な発展によるものです。 今日のコンピューターは膨大なデータセットにアクセスし、複雑なタスクを数ミリ秒で完了できます。学習や思考など、人間の行動を必要とするタスクを実行するための計算能力を備えています。現在、企業は直接的な業務や重要なプロセスを AI に移行する場所をますます多く見つけ始めています。 20 年前のサービスとしてのソフトウェアと同様に、AI は、効率性と革新性を高めるテクノロジーを活用して企業が市場を上回る成果を上げる新しい方法です。 大手グローバルテクノロジー企業は、広範なデータサイエンスと収集機能を備えており、AI を組み込んだ複雑なソリューションを設計およびプログラムできる社内人材を擁しています。しかし、中小企業の多くは、大規模な開発投資や技術者の雇用を行わずに AI の力を活用するために、外部リソースからのサポートを必要としています。 注目すべきAIaaSプロバイダー Google、IBM、Amazon、Microsoft、Salesforce などの世界的なテクノロジー リーダーは、大規模なパブリック クラウド ベースのプラットフォームを備え、人工知能サービス (AIaaS) の Software as a Service プロバイダーへと進化しています。これらのテクノロジー大手は、音声認識、画像/顔認識、予測分析などの AI 機能をクラウド プラットフォームとサービスに導入しています。たとえば、Google は、大規模なクラウド プラットフォームを通じて AI Hub、AI Building Blocks、AI Platform などのツールを提供し、組織がプロジェクトやアプリケーションに AI 機能を組み込むことを支援しています。 Amazon は、サービスとしてのソフトウェアの形で AI も提供しており、Amazon が「開発者やデータ サイエンティストがあらゆる規模の機械学習モデルを迅速かつ簡単に構築、トレーニング、展開できる」ツールと説明している Web サービス SageMaker も提供しています。 画期的なテクノロジー系スタートアップ企業が急成長中の AIaaS 市場に参入し、競争力のあるソリューションと独創的なブレークスルーを提供するにつれ、大手テクノロジー企業による人工知能の提供は拡大し続けるでしょう。 AI に精通したデータ サイエンティストや開発者のチームを独自に構築するリソースを持たない企業にとって朗報なのは、テクノロジーの急速な進歩の周辺に留まる必要がないことです。 Software as a Service がソフトウェアの所有と管理に伴う複雑さと投資を削減したのと同様に、AIaaS は人工知能を通じてビジネス インテリジェンスの最適化のコストと複雑さを削減します。 |
<<: 人工知能はディープラーニングへと移行しており、強力なコンピューティングパワーの構築は重要な指標となっている
>>: 508件のAI防疫事例のデータ分析:各地域でのAI防疫パフォーマンス
[[236693]]ビッグデータダイジェスト制作翻訳者:張秋月、郝貴儿、倪倩、飛、ヴァージル、銭天...
ご存知のとおり、自然言語処理 (NLP) とコンピューター ビジョン (CV) は、人工知能の 2 ...
先週、私たちは PaddlePaddle と Tensorflow を使用して画像分類を実装し、自分...
人工知能(AI)は、最初のコンピュータが発明されて以来、長い道のりを歩んできました。今日、人工知能は...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
1. 要件の説明文字列を入力し、文字列内で連続する最長の文字と、その文字が連続して出現する回数を検索...
[[438361]]次世代自動運転システムの設計における反復的な更新は、主に新機能の継続的な反復に反...
[[214638]]ノイズ除去オートエンコーダー (DAE) は、破損したデータを入力として受け入...
マイクロソフトは最近、シアトルで開催されたIgniteカンファレンスで2つのAIチップをリリースした...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
Linux SNMP を十分に学習したい場合は、いくつかのモジュールに精通している必要があります。そ...