データサイエンティストが最もよく使用するアルゴリズム10選

データサイエンティストが最もよく使用するアルゴリズム10選

最新の KDnuggets 調査では、データ サイエンティストの実際の業務で最もよく使用されるアルゴリズムが集計されており、ほとんどの学術界と産業界において驚くべき発見がありました。

KDnuggets の Gregory Piatetsky 氏によると、最新の調査質問は次のとおりです。過去 12 か月間に、実際のデータ サイエンス関連のアプリケーションでどのモデル/アルゴリズムを使用しましたか?

したがって、844 枚の解答用紙に基づく結果は次のとおりです。

◆ ◆ ◆

上位10のアルゴリズムとその投票者の割合

図1: データサイエンティストが最もよく使用するアルゴリズムのトップ10。すべてのアルゴリズムについては、記事の最後にある表を参照してください。

回答者は平均 8.1 個のアルゴリズムを使用しており、これは 2011 年の同様の調査と比較すると大幅に増加しています。

2011 年のデータ分析アルゴリズムの調査と比較すると、最も一般的に使用されている方法は依然として回帰、クラスタリング、決定木/ルール、視覚化であることがわかりました。最大の増加率は(増加 = %2016/%2011 -1)です。

ブースティングアルゴリズムが40%改善されました。 2011年の23.5%から2016年には40%に増加した。

テキストマイニングが30%向上しました。 27.7%から35.9%へ

視覚化が 27% 向上しました。 38.3%から48.7%へ

時系列/シーケンス分析: 25% 改善されました。 29.6%から37.0%へ

異常/逸脱検出、16.4%から19.5%に19%改善

アンサンブル法、28.3%から33.6%に19%増加

サポートベクターマシン(SVM)は28.6%から33.6%に18%向上しました。

後退、57.9%から67.1%に16%改善

◆ ◆ ◆

2016年最も人気のある新人は

K近傍法、46%

主成分分析(PCA)、43%

ランダムフォレスト、38%

最適化、24%

ニューラルネットワーク - ディープラーニング、19%

特異値分解、16%

◆ ◆ ◆

最も大きな下落は

関連性ルール、28.6%から15.3%に47%減少

アップリフトモデリング、4.8%から3.1%に36%減少(これに関する膨大な文献を考慮すると驚くほど低い)

要因分析、24%減少、18.6%から14.2%へ

生存分析、9.3%から7.9%に15%減少

次の表は、さまざまなアルゴリズム タイプ (教師ありアルゴリズム、教師なしアルゴリズム、メタアルゴリズム、その他のアルゴリズム) が使用される場所を示しています。応募種別不明(NA、4.5%)またはその他の職業種別(3%)は含まれていません。

表1: 職業種別アルゴリズムの使用状況

ほぼ全員が教師あり学習アルゴリズムを使用していることに気付きました。政府や産業界のデータ サイエンティストは、学生や科学者よりも多様なアルゴリズムを使用します。産業データサイエンティストはメタアルゴリズムの使用を好みます。

◆ ◆ ◆

さまざまな職業で最もよく使われるアルゴリズム + ディープラーニングのトップ 10

次に、さまざまな職業で最もよく使用されるアルゴリズム+ディープラーニングのトップ10を分析しました。

表2: 職業別のトップ10アルゴリズム+ディープラーニング

これらの違いをより明確に示すために、異なる職業タイプのアルゴリズム使用バイアスを計算する式を使用します。

バイアス = 特定の職業タイプのアルゴリズム使用率 / すべての職業タイプのアルゴリズム使用率 - 1

図2: さまざまな会場でのアルゴリズム使用の偏り

産業データ サイエンティストは、回帰、視覚化、統計、ランダム フォレスト、時系列を使用する傾向があることに気付きました。政府機関や非営利団体では、視覚化、主成分分析、時系列を使用する可能性が高くなります。学術界の研究者は主成分分析とディープラーニングをより多く利用しています。学生は一般的にアルゴリズムをあまり使用しませんが、主にテキストマイニングとディープラーニングを使用します。

次に、KDnuggets ユーザー全体を表す特定の地域でのエンゲージメントを見てみましょう。

調査員の地域分布:

アメリカ/カナダ、40%

ヨーロッパ、32%

アジア、18%

ラテンアメリカ、5.0%

アフリカ/中東、3.4%

オーストラリア/ニュージーランド、2.2%

2011 年の調査では、業界と政府からの回答者を 1 つのグループにまとめ、学術研究者と学生を 1 つのグループにまとめ、業界と政府グループのアルゴリズムの使用知識を計算しました。

(産官グループのアルゴリズム利用率 / 学術学生グループのアルゴリズム利用率) / (産官グループの人数 / 学術学生グループの人数) - 1

したがって、親和性が 0 のアルゴリズムは、業界/政府グループと学術学生グループによって同等に使用されていることを示します。 IG 親密度が高くなるほど、アルゴリズムは業界に偏り、結果が小さくなるほど、アルゴリズムは学術に偏ります。

最も「工業的なアルゴリズム」は次のとおりです。

モデリングの向上、2.01

異常検出、1.61

生存分析、1.39

因子分析、0.83

時系列/シーケンス分析、0.69

相関ルール、0.5

アップリフト モデリングは今回も最も好まれる「業界アルゴリズム」ですが、驚くほど使用頻度が低く、調査全体で最も低い 3.1% にとどまっています。

最も「学術的なアルゴリズム」は次のとおりです。

ニューラルネットワーク、-0.35

ナイーブベイズ、-0.35

サポートベクターマシン、-0.24

ディープラーニング、-0.19

最大期待値、-0.17

下の図は、すべてのアルゴリズムとその業界/学術的親和性を示しています。

図 3: KDnuggets 調査: データ サイエンティストが最もよく使用するアルゴリズム: 業界と学術界の比較

次の表には、2016 年の回答者の使用率、2011 年の使用率、変化 (2016 年の割合 / 2011 年の割合 - 1)、および前述の業界の精通度など、アルゴリズム調査のすべての結果が詳細に記載されています。

表3: KDnuggets 2016 調査: データ サイエンティストが使用するアルゴリズム

以下の表は、すべてのアルゴリズムの調査結果の詳細を示しています。各列は次の内容を表しています。

ランキング: 使用率によるランキング

アルゴリズム: アルゴリズム名

タイプ: S – 教師あり、U – 教師なし、M – メタ、Z – その他の方法、

2016年の調査でアルゴリズムを使用した人の割合

2016年の調査でアルゴリズムを使用した人の割合

変化: (%2016 / %2011 -1)、

業界の親和性については上記で説明しました。

表4: KDnuggets 2016 調査: データサイエンティストが使用するアルゴリズム

<<:  データ構造の8つの一般的なソートアルゴリズム

>>:  ハッシュ長拡張攻撃に対して脆弱なアルゴリズム

ブログ    

推薦する

杭州市の100以上の交差点で無人信号制御が実現し、杭州シティブレイン1.0が正式にリリースされました

10月11日、アリババは2017年杭州雲奇大会で、人類のテクノロジーの未来を探求する実験室「大墨学院...

...

スタンフォード大学がトランスフォーマー代替モデルを訓練:1億7000万のパラメータ、バイアスを除去可能、制御可能、解釈可能

GPT に代表される大規模言語モデルは、これまでも、そしてこれからも、並外れた成果を達成し続けますが...

...

強力な顔認識システムを騙すには、額に紙を貼り付けてください。 Huawei製、Face IDは終了

[[275013]]額にお守りを貼るとAIがあなたを認識できなくなるって知っていましたか?たとえば、...

ドローンは緊急通信の発展に役立ちますが、この3つのポイントが重要です。

近年、インターネットの急速な発展に伴い、通信ニーズが継続的に高まり始めており、通信保証能力がますます...

GitHubで3,000以上のいいねを獲得した「機械学習ロードマップ」は、モンスターをアップグレードして倒す方法を教えてくれる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

自動運転と軌道予測についてはこちらの記事をお読みください。

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

Google が史上最強の人間の脳の「地図」を公開、3D ニューロンの「森」がオンラインで閲覧可能に

シナプスはニューラルネットワークの「橋」です。人間の脳には 860 億個のニューロンがあり、あるニュ...

今年、AIがサイバーセキュリティに影響を及ぼす可能性がある3つの重要な方法

この記事では、超強力なソーシャル攻撃から AI 搭載 PC まで、AI が今年サイバーセキュリティを...

...

組み込みアルゴリズム: ビッグデータ可変長ストレージアルゴリズム

1. 適用シナリオ高精度のサンプリング結果の場合、最大値には 3 バイト、最小値には 1 バイトが必...

ChatGPTは来週Androidでリリースされ、事前登録が開始されました

ChatGPTは来週Android版をリリースすることを公式に発表し、Google Playストアで...

顔の特徴を検出するシンプルなディープラーニング手法を教えます

著者注: 携帯電話で、人の顔に特殊効果を加えるアプリを見たことがあるかもしれません。これらのアプリは...